Search results

1 – 3 of 3
Article
Publication date: 9 November 2012

Indrek Roasto and Dmitri Vinnikov

This paper is devoted to the quasi‐Z‐source (qZS) converter family. Recently, the qZS‐converters have attracted high attention because of their specific properties of voltage…

Abstract

Purpose

This paper is devoted to the quasi‐Z‐source (qZS) converter family. Recently, the qZS‐converters have attracted high attention because of their specific properties of voltage boost and buck functions with a single switching stage. As main representatives of the qZS‐converter family, this paper aims to discuss the traditional quasi‐Z‐source inverter as well as two novel extended boost quasi‐Z‐source inverters.

Design/methodology/approach

Steady state analysis of the investigated topologies operating in the continuous conduction mode is presented. Input voltage boost properties of converters are compared for an ideal case. Mathematical models of converters considering losses in components are derived. Practical boost properties of converters are compared to idealized ones and the impact of losses on the voltage boost properties of each topology is justified. Finally, the impact of losses in the components on the boost conversion efficiency is analyzed.

Findings

To demonstrate the impact of component losses on the overall efficiency of the qZS‐converter, a number of experiments were performed. The impact of inductor winding resistance was compared with the forward voltage drop of qZS‐network diodes. It was found that the forward voltage drop of diodes has the highest effect on the efficiency. If the diodes are replaced with high‐power Schottky rectifiers with a low forward voltage drop (UD=0.6 V), the effective efficiency rise by at least 5 percent could be expected for all three qZS‐converter topologies. For the same operating parameters and component values, the traditional qZS‐converter had the highest efficiency of the qZS‐converter family. The boost converter was compared with the traditional qZS converter in terms of efficiency. It was found that the boost converter has an efficiency 2 percent higher in the boost operation mode and approximately the same efficiency in the non‐boost operation.

Practical implications

The paper provides a good theoretical background for further practical studies. qZS‐converters have voltage boost and buck functions with a single switching stage, which could be especially advantageous in renewable energy applications.

Originality/value

The paper presents a detailed study of the qZS‐converter family. Mathematical models of converters considering losses in components are derived. It is the first time the boost converter is compared with the qZS converter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2012

Andrei Blinov, Dmitri Vinnikov, Volodymyr V. Ivakhno and Vladimir V. Zamaruev

This paper aims to present an analysis of a hybrid high‐voltage switch based on the parallel connection of IGBT and IGCT. The proposed configuration combines the advantages of…

Abstract

Purpose

This paper aims to present an analysis of a hybrid high‐voltage switch based on the parallel connection of IGBT and IGCT. The proposed configuration combines the advantages of both semiconductors, resulting in substantially reduced power losses. Such energy efficient switches could be used in high‐power systems where the requirements of high switching frequency or decreased cooling systems are a major concern.

Design/methodology/approach

The operation principle of the switch is described and simulated. The power dissipation is estimated at different operation conditions. Further, the implementation possibilities of the proposed switch configuration in a three‐level NPC inverter are analysed. The operation with the proposed PWM control algorithm is simulated and inverter power loss distribution is estimated.

Findings

According to estimations, the proposed hybrid switch configuration allows the reduction of total losses in semiconductors by at least 50 percent. If two of these switches are used in a three‐level NPC inverter as outer switches, the total losses of the inverter are reduced by 27 percent, at the same time the losses in the most stressed semiconductor device are reduced by a factor of 2.25. Therefore, achieving higher power density is possible.

Practical implications

The proposed switch configuration is intended for high‐power (>500 KVA) industrial, marine and railway traction systems, such as FACTS and high power variable frequency AC drives.

Originality/value

The paper presents the novel energy‐efficient high‐voltage switch based on the parallel connection of commercially available IGBTs and IGCTs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2011

Dmitri Vinnikov and Juhan Laugis

The paper presents the findings of an R&D project connected to the development of 50 kW auxiliary power supply for the high‐voltage DC‐fed commuter trains. The aim was to…

Abstract

Purpose

The paper presents the findings of an R&D project connected to the development of 50 kW auxiliary power supply for the high‐voltage DC‐fed commuter trains. The aim was to introduce a new generation power converter utilizing high‐voltage insulated gate bibolar transistor (IGBT) modules, which can outpace the predecessors in terms of efficiency and power density, i.e. to provide more power for smaller volumetric space.

Design/methodology/approach

For development of the proposed converter, mathematical analysis and computer simulations were used. The software intended for simulations is Ansoft Simplorer, which is a mixed‐technology simulator for electrical, electromechanical, power electronic systems and drive applications. For the verification of theoretical results the full‐scale laboratory prototype of the proposed converter was developed and tested.

Findings

Thanks to increased switching frequency and current‐doubler rectifier (CDR) implemented in the proposed converter, the power dissipation of the isolation transformer was reduced by 30 percent as compared to earlier designs. Moreover, the 27 and 24 percent reductions in rectifier and inductor losses, respectively, led to approximately 1 percent efficiency rise of the proposed converter in comparison with its predecessors. Also, the proposed three‐level topology outpaces the two‐level one by more than 20 percent in terms of power density.

Practical implications

The proposed converter topology is aimed for the high‐voltage DC trains. With small modifications it also can be used in trams, trolleybuses as well as in some industrial applications.

Originality/value

The paper presents the novel DC/DC converter topology with 3.3 kV IGBT‐based three‐level neutral point clamped inverter, high‐frequency isolation transformer and the CDR.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3