Search results

1 – 10 of over 2000
Article
Publication date: 31 July 2007

Kaiçar Ammous, Slim Abid and Anis Ammous

The paper aims to focus on the semiconductor temperature prediction in the multichip modules by using a simplified 1D model, easy to implement in the electronic simulation tools.

Abstract

Purpose

The paper aims to focus on the semiconductor temperature prediction in the multichip modules by using a simplified 1D model, easy to implement in the electronic simulation tools.

Design/methodology/approach

Accurate prediction of temperature variation of power semiconductor devices in power electronic circuits is important for obtaining optimum designs and estimating reliability levels. Temperature estimation of power electronic devices has generally been performed using transient thermal equivalent circuits. This paper has studied the thermal behaviour of the power modules. The study leads to correcting the junction temperature values estimated from the transient thermal impedance of each component operating alone. The corrections depend on multidimensional thermal phenomena in the structure.

Findings

The classic analysis of thermal phenomena in the multichip structures, independently of powers’ dissipated magnitude and boundary conditions, is not correct. An advanced 1D thermal model based on the finite element method is proposed. It takes into account the effect of the heat‐spreading angle of the different devices in the module.

Originality/value

The paper focuses on mathematical model of the thermal behaviour in the power module. The study leads to a correction of the junction temperature values estimated from the transient thermal impedance of each component given by manufacturers. The proposed model gives a good trade‐off between accuracy, efficiency and simulation cost.

Details

Microelectronics International, vol. 24 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 6 March 2017

Oscar Lucia, Hector Sarnago and José M. Burdio

Wide-bandgap (WBG) semiconductors have emerged as a disruptive technology in the power electronics sphere. This paper aims to analyse and discuss the importance for induction…

Abstract

Purpose

Wide-bandgap (WBG) semiconductors have emerged as a disruptive technology in the power electronics sphere. This paper aims to analyse and discuss the importance for induction heating systems and gives some examples and highlights some future design trends and perspectives.

Design/methodology/approach

The benefits of WBG semiconductors are reviewed with a special emphasis on induction heating applications.

Findings

WBG devices enable the design of higher-performance induction heating power supplies. A significant selection of the reported converters is discussed, highlighting the benefits of this technology.

Originality/value

This paper highlights the benefits of WBG semiconductors and their potential to change and improve induction heating technology in the next years.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2012

Andrei Blinov, Dmitri Vinnikov, Volodymyr V. Ivakhno and Vladimir V. Zamaruev

This paper aims to present an analysis of a hybrid high‐voltage switch based on the parallel connection of IGBT and IGCT. The proposed configuration combines the advantages of…

Abstract

Purpose

This paper aims to present an analysis of a hybrid high‐voltage switch based on the parallel connection of IGBT and IGCT. The proposed configuration combines the advantages of both semiconductors, resulting in substantially reduced power losses. Such energy efficient switches could be used in high‐power systems where the requirements of high switching frequency or decreased cooling systems are a major concern.

Design/methodology/approach

The operation principle of the switch is described and simulated. The power dissipation is estimated at different operation conditions. Further, the implementation possibilities of the proposed switch configuration in a three‐level NPC inverter are analysed. The operation with the proposed PWM control algorithm is simulated and inverter power loss distribution is estimated.

Findings

According to estimations, the proposed hybrid switch configuration allows the reduction of total losses in semiconductors by at least 50 percent. If two of these switches are used in a three‐level NPC inverter as outer switches, the total losses of the inverter are reduced by 27 percent, at the same time the losses in the most stressed semiconductor device are reduced by a factor of 2.25. Therefore, achieving higher power density is possible.

Practical implications

The proposed switch configuration is intended for high‐power (>500 KVA) industrial, marine and railway traction systems, such as FACTS and high power variable frequency AC drives.

Originality/value

The paper presents the novel energy‐efficient high‐voltage switch based on the parallel connection of commercially available IGBTs and IGCTs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2014

Hanen Mejbri, Kaiçar Ammous, Slim Abid, Hervé Morel and Anis Ammous

– This paper aims to focus on the trade-off between losses and converter cost.

Abstract

Purpose

This paper aims to focus on the trade-off between losses and converter cost.

Design/methodology/approach

The continual development of power electronic converters, for a wide range of applications such as renewable energy systems (interfacing photovoltaic panels via power converters), is characterized by the requirements for higher efficiency and lower production costs. To achieve such challenging objectives, a computer-aided design optimization based on genetic algorithms is developed in Matlab environment. The elitist non-dominated sorting genetic algorithm is used to perform search and optimization, whereas averaged models are used to estimate power losses in different semiconductors devices. The design problem requires minimizing the losses and cost of the boost converter under electrical constraints. The optimization variables are, as for them, the switching frequency, the boost inductor, the DC capacitor and the types of semiconductor devices (IGBT and MOSFET). It should be pointed out that boost topology is considered in this paper but the proposed methodology is easily applicable to other topologies.

Findings

The results show that such design methodology for DC-DC converters presents several advantages. In particular, it proposes to the designer a set of solutions – as an alternative of a single one – so that the authors can choose a posteriori the adequate solution for the application under consideration. This then allows the possibility of finding the best design among all the available choices. Furthermore, the design values for the selected solution were obtainable components.

Originality/value

The authors focus on the general aspect of the discrete optimization approach proposed here. It can also be used by power electronics designers with the help of additional constraints in accordance with their specific applications. Furthermore, the use of such non-ideal average models with the multi-objective optimization is the original contribution of the paper and it has not been suggested so far.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 January 2022

Mazdak Ebadi, Negin Abbasi and Hamidreza Maghsoudi

This paper aims to propose an integrated protection scheme for converters of a low-power, low-cost photovoltaic system. Power electronic converters use a variety of methods to…

Abstract

Purpose

This paper aims to propose an integrated protection scheme for converters of a low-power, low-cost photovoltaic system. Power electronic converters use a variety of methods to limit overload and fault current. The use of insulated and non-insulated sensors along with additional circuits to detect and limit fault current can cause current to be limited or completely cut off before damage to semiconductor devices. In addition, fuses that have slower performance are used as backup for any type of protection.

Design/methodology/approach

First, all the candidate points for protection are investigated. In this paper, after examining the performance of glass fuses as linear resistors, they are used as a current feedback element. A simple, isolated and reliable circuit for fault detection at various points of the system has been proposed that can be implemented and operated in single shot or auto-reclose operating mode.

Findings

The experimental results of this circuit on a dc/dc converter and an H-bridge inverter show that it can cut off all instantaneous short circuit errors in less than 50 µs and prevent damage to the semiconductor switch.

Originality/value

In low-cost and low-power converters, it is usually not cost-effective to use complex and expensive devices. For this reason, these converters are more vulnerable to faults. On the other hand, in complex systems such as photovoltaics, several converters are used simultaneously in different parts, and the occurrence of a fault in each of them causes the whole system to fail.

Details

Circuit World, vol. 48 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 March 2012

Christophe Versèle, Olivier Deblecker and Jacques Lobry

This paper presents a computer‐aided design (CAD) tool for the design of isolated dc‐dc converters.

Abstract

Purpose

This paper presents a computer‐aided design (CAD) tool for the design of isolated dc‐dc converters.

Design/methodology/approach

This tool, developed in Matlab environment, is based on multiobjective optimization (MO) using genetic algorithms. The Elitist Nondominated Sorting Genetic Algorithm is used to perform search and optimization whereas analytical models are used to model the power converters. The design problem requires minimizing the weight, losses and cost of the converter while ensuring the satisfaction of a number of constraints. The optimization variables are, as for them, the operating frequency, the current density, the maximum flux density, the transformer dimensions, the wire diameter, the core material, the conductor material, the converter topology (among Flyback, Forward, Push‐Pull, half‐bridge and full‐bridge topologies), the number of semiconductor devices associated in parallel, the number of cells associated in series or parallel as well as the kinds of input and output connections (serial or parallel) of these cells. Finally, the design of an auxiliary railway power supply is presented and discussed.

Findings

The results show that such tool to design dc‐dc power converters presents several advantages. In particular, it proposes to the designer a set of solutions – instead of a single one – so that he can choose a posteriori which solution best fits the application under consideration. Moreover, interesting solutions not considered a priori can be found with this tool.

Originality/value

To the best of the authors’ knowledge, such a CAD tool including a MO procedure taking several topologies into account has not been suggested so far.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 September 2019

Zhenmin Wang, Wenyan Fan, Fangxiang Xie and Chunxian Ye

This paper aims to present an 8 kW LLC resonant converter designed for plasma power supply with higher efficiency and lighter structure. It presents how to solve the problems of…

Abstract

Purpose

This paper aims to present an 8 kW LLC resonant converter designed for plasma power supply with higher efficiency and lighter structure. It presents how to solve the problems of large volume and weight, low performance and low efficiency of traditional plasma power supply.

Design/methodology/approach

At present, conventional silicon (Si) power devices’ switching performance is close to the theoretical limit determined by its material properties; the next-generation silicon carbide (SiC) power devices with outstanding advantages can be used to optimal design. This 8 kW LLC resonant converter prototype with silicon carbide (SiC) power devices with a modulated switching frequency ranges from 100  to 400 kHz.

Findings

The experimental results show that the topology, switching loss, rectifier loss, transformer loss and drive circuit of the full-bridge LLC silicon carbide (SiC) plasma power supply can be optimized.

Research limitations/implications

Due to the selected research object (plasma power supply), this study may have limited universality. The authors encourage the study of high frequency resonant converters for other applications such as argon arc welding.

Practical implications

This study provides a practical application for users to improve the quality of plasma welding.

Originality/value

The experimental results show that the full-bridge LLC silicon carbide (SiC) plasma power supply is preferred in operation under conditions of high frequency and high voltage. And its efficiency can reach 98%, making it lighter, more compact and more efficient than previous designs.

Details

Circuit World, vol. 45 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 11 May 2010

Kaiçar Ammous, Elyes Haouas and Slim Abid

The purpose of this paper is to develop a simulation tool which permits reducing the cost of long time‐range simulation of complex converters and running at high frequency.

Abstract

Purpose

The purpose of this paper is to develop a simulation tool which permits reducing the cost of long time‐range simulation of complex converters and running at high frequency.

Design/methodology/approach

A different method is used to represent a simplified converter but the adopted technique uses the average representation of the cell converter.

Findings

The paper shows that the use of averaged representation of the pulse width modulation switch in multilevel converters is staying applied. The main advantage of the proposed averaged model is its simplified representation when only electrical behaviour is considered.

Research limitations/implications

The analytical algorithm of the averaged model can be introduced in different simulator as it has a description language, enabling study of the Compatibilité Electromagnétique and electrothermal phenomena.

Originality/value

This paper presents an averaged model of the multilevel converter which can be implemented in any simulator as it has a description language.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 December 2020

Hao Zou, Fang Xie, Bo Du and G. Kavithaa

The purpose of this paper is to find the optimum inverter type as the solder joint reliability point of view.

Abstract

Purpose

The purpose of this paper is to find the optimum inverter type as the solder joint reliability point of view.

Design/methodology/approach

In this paper, finite element model(ing) simulations supported with power cycling aging experiments were used to demonstrate the best inverter type as the solder joint reliability point of view.

Findings

It was found that inverter types highly affect the solder joint health during its nominal operating.

Originality/value

The authors confirm the originality of this paper.

Details

Soldering & Surface Mount Technology, vol. 33 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 August 2004

Guo‐Quan Lu, Xingsheng Liu, Sihua Wen, Jesus Noel Calata and John G. Bai

In this paper, some strategies taken to improve the reliability of solder joints on power devices in single device and multi‐chip packages are presented. A strategy for improving…

Abstract

In this paper, some strategies taken to improve the reliability of solder joints on power devices in single device and multi‐chip packages are presented. A strategy for improving solder joint reliability by adjusting solder joint geometry, underfilling and utilization of flexible substrates is discussed with emphasis on triple‐stacked solder joints that resemble the shape of an hourglass. The hourglass shape relocates the highest inelastic strain away from the weaker interface with the chip to the bulk region of the joint, while the underfill provides a load transfer from the joints. Thermal cycling data show significant improvements in reliability when these techniques are used. The design, testing and finite‐element analyses of an interconnection structure, termed the Dimple‐Array Interconnect, for improving the solder joint reliability is also presented.

Details

Soldering & Surface Mount Technology, vol. 16 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 2000