Search results

1 – 10 of 298
Open Access
Article
Publication date: 31 March 2021

Mei Sha, Theo Notteboom, Tao Zhang, Xin Zhou and Tianbao Qin

This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System…

Abstract

This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System (CTLOS). The simulation model for the CTLOS, a typical type of discrete event dynamic system (DEDS), consists of three sub-models: ship queue, loading-unloading operations and yard-gate operations. The simulation model is empirically applied to phase 1 of the Yangshan Deep Water Port in Shanghai. This study considers different scenarios in terms of container throughput levels, equipment utilization rates, and operational bottlenecks, and presents a sensitivity analysis to evaluate and choose reasonable equipment ratio ranges under different operational conditions.

Details

Journal of International Logistics and Trade, vol. 19 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Content available
Article
Publication date: 18 May 2023

Adam Biggs, Greg Huffman, Joseph Hamilton, Ken Javes, Jacob Brookfield, Anthony Viggiani, John Costa and Rachel R. Markwald

Marksmanship data is a staple of military and law enforcement evaluations. This ubiquitous nature creates a critical need to use all relevant information and to convey outcomes in…

Abstract

Purpose

Marksmanship data is a staple of military and law enforcement evaluations. This ubiquitous nature creates a critical need to use all relevant information and to convey outcomes in a meaningful way for the end users. The purpose of this study is to demonstrate how simple simulation techniques can improve interpretations of marksmanship data.

Design/methodology/approach

This study uses three simulations to demonstrate the advantages of small arms combat modeling, including (1) the benefits of incorporating a Markov Chain into Monte Carlo shooting simulations; (2) how small arms combat modeling is superior to point-based evaluations; and (3) why continuous-time chains better capture performance than discrete-time chains.

Findings

The proposed method reduces ambiguity in low-accuracy scenarios while also incorporating a more holistic view of performance as outcomes simultaneously incorporate speed and accuracy rather than holding one constant.

Practical implications

This process determines the probability of winning an engagement against a given opponent while circumventing arbitrary discussions of speed and accuracy trade-offs. Someone wins 70% of combat engagements against a given opponent rather than scoring 15 more points. Moreover, risk exposure is quantified by determining the likely casualties suffered to achieve victory. This combination makes the practical consequences of human performance differences tangible to the end users. Taken together, this approach advances the operations research analyses of squad-level combat engagements.

Originality/value

For more than a century, marksmanship evaluations have used point-based systems to classify shooters. However, these scoring methods were developed for competitive integrity rather than lethality as points do not adequately capture combat capabilities. The proposed method thus represents a major shift in the marksmanship scoring paradigm.

Details

Journal of Defense Analytics and Logistics, vol. 7 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 27 July 2020

T.M. Pinho, J.P. Coelho, P.M. Oliveira, B. Oliveira, A. Marques, J. Rasinmäki, A.P. Moreira, G. Veiga and J. Boaventura-Cunha

The optimisation of forest fuels supply chain involves several entities actors, and particularities. To successfully manage these supply chains, efficient tools must be devised…

1539

Abstract

The optimisation of forest fuels supply chain involves several entities actors, and particularities. To successfully manage these supply chains, efficient tools must be devised with the ability to deal with stakeholders dynamic interactions and to optimize the supply chain performance as a whole while being stable and robust, even in the presence of uncertainties. This work proposes a framework to coordinate different planning levels and event-based models to manage the forest-based supply chain. In particular, with the new methodology, the resilience and flexibility of the biomass supply chain is increased through a closed-loop system based on the system forecasts provided by a discrete-event model. The developed event-based predictive model will be described in detail, explaining its link with the remaining elements. The implemented models and their links within the proposed framework are presented in a case study in Finland and results are shown to illustrate the advantage of the proposed architecture.

Details

Applied Computing and Informatics, vol. 17 no. 1
Type: Research Article
ISSN: 2634-1964

Keywords

Content available
Article
Publication date: 23 October 2023

Adam Biggs and Joseph Hamilton

Evaluating warfighter lethality is a critical aspect of military performance. Raw metrics such as marksmanship speed and accuracy can provide some insight, yet interpreting subtle…

Abstract

Purpose

Evaluating warfighter lethality is a critical aspect of military performance. Raw metrics such as marksmanship speed and accuracy can provide some insight, yet interpreting subtle differences can be challenging. For example, is a speed difference of 300 milliseconds more important than a 10% accuracy difference on the same drill? Marksmanship evaluations must have objective methods to differentiate between critical factors while maintaining a holistic view of human performance.

Design/methodology/approach

Monte Carlo simulations are one method to circumvent speed/accuracy trade-offs within marksmanship evaluations. They can accommodate both speed and accuracy implications simultaneously without needing to hold one constant for the sake of the other. Moreover, Monte Carlo simulations can incorporate variability as a key element of performance. This approach thus allows analysts to determine consistency of performance expectations when projecting future outcomes.

Findings

The review divides outcomes into both theoretical overview and practical implication sections. Each aspect of the Monte Carlo simulation can be addressed separately, reviewed and then incorporated as a potential component of small arms combat modeling. This application allows for new human performance practitioners to more quickly adopt the method for different applications.

Originality/value

Performance implications are often presented as inferential statistics. By using the Monte Carlo simulations, practitioners can present outcomes in terms of lethality. This method should help convey the impact of any marksmanship evaluation to senior leadership better than current inferential statistics, such as effect size measures.

Details

Journal of Defense Analytics and Logistics, vol. 7 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 11 April 2018

Lee Evans and Ki-Hwan Bae

The paper aims to estimates the limitations of a forced distribution performance appraisal system in identifying the highest performing individuals within an organization…

2598

Abstract

Purpose

The paper aims to estimates the limitations of a forced distribution performance appraisal system in identifying the highest performing individuals within an organization. Traditionally, manpower modeling allows organizations to develop plans that meet future human resource requirements by modeling the flow of personnel within an organization. The aim is to quantify the limitations of a performance appraisal system in identifying the best-qualified individuals to fill future requirements.

Design/methodology/approach

This paper describes an exploratory study using discrete event simulation based on the assignment, evaluation and promotion history of over 2,500 officers in the US Army. The obtained data provide a basis for estimating simulation inputs that include system structure, system dynamics, human behavior and policy constraints. The simulation approach facilitates modeling officers who receive evaluations as they move throughout the system over time.

Findings

The paper provides insights into the effect of system structure and system dynamics on the evaluation outcome of employees. It suggests that decreasing the number of a rater’s subordinates has a significant effect on the accuracy of performance appraisals. However, increasing the amount of time individuals spend on each assignment has little effect on system accuracy.

Practical implications

This research allows an organization’s leadership to evaluate the possible consequences associated with evaluation policy prior to policy implementation.

Originality/value

This work advances a framework in assessing the effect of system dynamics and structure, and the extent to which they limit or enhance the accuracy of an organization’s forced distribution performance appraisal system.

Details

Journal of Defense Analytics and Logistics, vol. 1 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Book part
Publication date: 1 May 2019

Shiwei Chen, Kailun Feng and Weizhuo Lu

This paper aims to provide decision support for precast concrete contractors about both precast concrete supply chain strategies and construction configurations.

Abstract

Purpose

This paper aims to provide decision support for precast concrete contractors about both precast concrete supply chain strategies and construction configurations.

Design/Methodology/Approach

This paper proposes a simulation-based optimisation for supply chain and construction (SOSC) during the planning phase of PC building projects. The discrete event simulation is used to capture the characteristics of supply chain and construction processes, and calculate construction objectives under different plans. Particle swarm optimisation is combined with simulation to find optimal supply chain strategies and construction configurations.

Findings

The efficiency of SOSC is compared with the parametric simulation approach. Over 70 per cent of time and effort used to simulate and compare alternative plans is saved owing to SOSC.

Research Limitations/Implications

Building simulation model costs a lot of time and effort. The data requirement of the proposed method is high.

Practical Implications

The proposed SOSC approach can provide decision support for PC contractors by optimising supply chain strategies and construction configurations.

Originality/Value

This paper has two contributions: one is in providing a decision support tool SOSC to optimise both supply chain strategies and construction configurations, while the other is in building a prototype of SOSC and testing it in a case study.

Details

10th Nordic Conference on Construction Economics and Organization
Type: Book
ISBN: 978-1-83867-051-1

Keywords

Content available
Article
Publication date: 7 June 2022

Mary Ashley Stanton, Jason Anderson, John M. Dickens and Lance Champagne

The purpose of this research is to explore the utility of autonomous transport across two independent airframe maintenance operations at a single location.

Abstract

Purpose

The purpose of this research is to explore the utility of autonomous transport across two independent airframe maintenance operations at a single location.

Design/methodology/approach

This study leveraged discrete event simulation that encompassed real-world conditions on a United States Air Force flight line. Though the Theory of Constraints (TOC) lens, a high-demand, human-controlled delivery asset is analyzed and the impact of introducing an autonomous rover delivery vehicle is assessed. The authors’ simulations explored varying numbers and networks of rovers as alternative sources of delivery and evaluated these resources’ impact against current flight line operations.

Findings

This research indicates that the addition of five autonomous rovers can significantly reduce daily expediter delivery tasks, which results in additional expertise necessary to manage and execute flight line operations. The authors assert that this relief would translate into enhancements in aircraft mission capable rates, which could increase overall transport capacity and cascade into faster cargo delivery times, systemwide. By extension, the authors suggest overall inventory management could be improved through reduction in transportation shipping time variance, which enhances the Department of Defense’s overall supply chain resilience posture.

Originality/value

When compared against existing practices, this novel research provides insight into actual flight line movement and the potential benefits of an alternative autonomous delivery system. Additionally, the research measures the potential savings in the workforce and vehicle use that exceeds the cost of the rovers and their employment.

Details

Journal of Defense Analytics and Logistics, vol. 6 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 4 September 2020

Laura Macchion and Rosanna Fornasiero

Supply chain (SC) configuration has gained increased acceptance as an important issue when evaluating new customization possibilities and this evidence has contributed to the…

5094

Abstract

Purpose

Supply chain (SC) configuration has gained increased acceptance as an important issue when evaluating new customization possibilities and this evidence has contributed to the strengthening of the debate between global vs local production locations. This work contributes in enrichment of this topic by studying how local or global SC location decisions influence performances by considering a SC point of view, in terms of cost and time, in traditional and customized productions.

Design/methodology/approach

A discrete event simulation approach, based on experimentation through executable configurations, was used to evaluate different SC scenarios for customized as well as traditional products within the footwear industry.

Findings

The results indicated that to identify proper SC locations, existing trade-offs between the time and cost performances should be studied, avoiding the evaluation of a single performance independently and, instead, adopting a complete SC point of view while considering these performances.

Research limitations/implications

This evidence has contributed to the reinforcement of the discussion between far-shore destinations vs near-shore production locations. Further studies are encouraged to adopt the present model, in which addition of other variables such as specific manufacturing competences to differentiate suppliers, both local and global suppliers, or the possibility of realizing special types of product customization required by final consumers can be done.

Practical implications

The paper contributes to the academic and practitioners' debate by proposing a systemic approach to assess SCs’ performances in customized contexts and to compare them to traditional collections. Results indicate that cost and time performance must find a balance that does not necessarily correspond to an exclusively local or global production.

Originality/value

This work contributes to the SC configuration issue by considering the trade-off between efficiency and effectiveness (i.e. SC costs and SC times) for customized productions by reviving and enriching it with an SC perspective in customization contexts.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1361-2026

Keywords

Content available
Article
Publication date: 24 July 2024

Luan Thanh Le and Trang Xuan-Thi-Thu

To achieve the Sustainable Development Goals (SDGs) in the era of Logistics 4.0, machine learning (ML) techniques and simulations have emerged as highly optimized tools. This…

169

Abstract

Purpose

To achieve the Sustainable Development Goals (SDGs) in the era of Logistics 4.0, machine learning (ML) techniques and simulations have emerged as highly optimized tools. This study examines the operational dynamics of a supply chain (SC) in Vietnam as a case study utilizing an ML simulation approach.

Design/methodology/approach

A robust fuel consumption estimation model is constructed by leveraging multiple linear regression (MLR) and artificial neural network (ANN). Subsequently, the proposed model is seamlessly integrated into a cutting-edge SC simulation framework.

Findings

This paper provides valuable insights and actionable recommendations, empowering SC practitioners to optimize operational efficiencies and fostering an avenue for further scholarly investigations and advancements in this field.

Originality/value

This study introduces a novel approach assessing sustainable SC performance by utilizing both traditional regression and ML models to estimate transportation costs, which are then inputted into the discrete event simulation (DES) model.

Details

Maritime Business Review, vol. 9 no. 3
Type: Research Article
ISSN: 2397-3757

Keywords

Content available
Article
Publication date: 10 May 2023

Pasquale Legato and Rina Mary Mazza

An integrated queueing network focused on container storage/retrieval operations occurring on the yard of a transshipment hub is proposed. The purpose of the network is to support…

Abstract

Purpose

An integrated queueing network focused on container storage/retrieval operations occurring on the yard of a transshipment hub is proposed. The purpose of the network is to support decisions related to the organization of the yard area, while also accounting for operations policies and times on the quay.

Design/methodology/approach

A discrete-event simulation model is used to reproduce container handling on both the quay and yard areas, along with the transfer operations between the two. The resulting times, properly estimated by the simulation output, are fed to a simpler queueing network amenable to solution via algorithms based on mean value analysis (MVA) for product-form networks.

Findings

Numerical results justify the proposed approach for getting a fast, yet accurate analytical solution that allows carrying out performance evaluation with respect to both organizational policies and operations management on the yard area.

Practical implications

Practically, the expected performance measures on the yard subsystem can be obtained avoiding additional time-expensive simulation experiments on the entire detailed model.

Originality/value

As a major takeaway, deepening the MVA for generally distributed service times has proven to produce reliable estimations on expected values for both user- and system-oriented performance metrics.

Details

Maritime Business Review, vol. 8 no. 4
Type: Research Article
ISSN: 2397-3757

Keywords

1 – 10 of 298