Search results

1 – 10 of 285
Article
Publication date: 31 July 2009

Hongbo Shan, Shenhua Zhou and Zhihong Sun

The purpose of this paper is to propose a novel method under the name of genetic simulated annealing algorithm (GSAA) and ant colony optimization (ACO) algorithm for assembly…

1011

Abstract

Purpose

The purpose of this paper is to propose a novel method under the name of genetic simulated annealing algorithm (GSAA) and ant colony optimization (ACO) algorithm for assembly sequence planning (ASP) which is possessed of the competence for assisting the planner in generating a satisfied and effective assembly sequence with respect to large constraint assembly perplexity.

Design/methodology/approach

Based on the genetic algorithm (GA), simulated annealing, and ACO algorithm, the GSAA are put forward. A case study is presented to validate the proposed method.

Findings

This GSAA has better optimization performance and robustness. The degree of dependence on the initial assembly sequence about GSAA is decreased. The optimization assembly sequence still can be obtained even if the assembly sequences of initial population are infeasible. By combining GA and simulated annealing (SA), the efficiency of searching and the quality of solution of GSAA is improved. As for the presented ACO algorithm, the searching speed is further increased.

Originality/value

Traditionally, GA heavily depends on the choosing original sequence, which can result in early convergence in iterative operation, lower searching efficiency in evolutionary process, and non‐optimization of final result for global variable. Similarly, SA algorithms may generate a great deal of infeasible solutions in the evolution process by generating new sequences through exchanging position of the randomly selected two parts, which results in inefficiency of the solution‐searching process. In this paper, the proposed GSAA and ACO algorithm for ASP are possessed of the competence for assisting the planner in generating a satisfied and effective assembly sequence with respect to large constraint assembly perplexity.

Details

Assembly Automation, vol. 29 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 May 2011

Lu Zhong, Sun Youchao, Okafor Ekene Gabriel and Wu Haiqiao

Maintenance disassembly that involves separating failed components from an assembly or system plays a vital role in line maintenance of civil aircraft, and it is necessary to have…

Abstract

Purpose

Maintenance disassembly that involves separating failed components from an assembly or system plays a vital role in line maintenance of civil aircraft, and it is necessary to have an effective and optimal sequence planning in order to reduce time and cost in maintenance. The purpose of the paper is to develop a more effective disassembly sequence planning method for maintenance of large equipment including civil aircraft systems.

Design/methodology/approach

The methodology involves the following steps: a component‐fastener graph is built to describe the equipment in terms of classifying components into two categories that are functional components and fasteners; interference matrix is developed to determine the removable component, and a disassembly sequence planning of functional components is proposed based on Dijkstra's algorithm; the disassembly sequence planning including fasteners is presented based on particle swarm optimization.

Findings

An application case, which takes the nose landing gear system of a regional jet as a study object, shows that the disassembly sequence planning method proposed in the paper can reduce the calculation complexity greatly, and its effectiveness is greater than that of a genetic algorithm‐based method, in most situations.

Practical implications

The method proposed herein can acquire the optimal maintenance disassembly sequence, which can reduce the cost and time for maintenance of large equipment.

Originality/value

A novel and effective disassembly sequence planning solution for maintenance of large equipment is presented, which can be applied to the line maintenance of civil aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 23 March 2023

Jiaqi Ji and Yong Wang

The purpose of this paper is to improve the automation of selective disassembly sequence planning (SDSP) and generate the optimal or near-optimal disassembly sequences.

Abstract

Purpose

The purpose of this paper is to improve the automation of selective disassembly sequence planning (SDSP) and generate the optimal or near-optimal disassembly sequences.

Design/methodology/approach

The disassembly constraints is automatically extracted from the computer-aided design (CAD) model of products and represented as disassembly constraint matrices for DSP. A new disassembly planning model is built for computing the optimal disassembly sequences. The immune algorithm (IA) is improved for finding the optimal or near-optimal disassembly sequences.

Findings

The workload for recognizing disassembly constraints is avoided for DSP. The disassembly constraints are useful for generating feasible and optimal solutions. The improved IA has the better performance than the genetic algorithm, IA and particle swarm optimization for DSP.

Research limitations/implications

All parts must have rigid bodies, flexible and soft parts are not considered. After the global coordinate system is given, every part is disassembled along one of the six disassembly directions –X, +X, –Y, +Y, –Z and +Z. All connections between the parts can be removed, and all parts can be disassembled.

Originality/value

The disassembly constraints are extracted from CAD model of products, which improves the automation of DSP. The disassembly model is useful for reducing the computation of generating the feasible and optimal disassembly sequences. The improved IA converges to the optimal disassembly sequence quickly.

Details

Robotic Intelligence and Automation, vol. 43 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 5 October 2018

Jun Guo, Jingcheng Zhong, Yibing Li, Baigang Du and Shunsheng Guo

To improve the efficiency of end-of-life product’s disassembly process, this paper aims to propose a disassembly sequence planning (DSP) method to reduce additional efforts of…

Abstract

Purpose

To improve the efficiency of end-of-life product’s disassembly process, this paper aims to propose a disassembly sequence planning (DSP) method to reduce additional efforts of removing parts when considering the changes of disassembly directions and tools.

Design/methodology/approach

The methodology has three parts. First, a disassembly hybrid graph model (DHGM) was adopted to represent disassembly operations and their precedence relations. After representing the problem as DHGM, a new integer programming model was suggested for the objective of minimizing the total disassembly time. The objective takes into account several criteria such as disassembly tools change and the change of disassembly directions. Finally, a novel hybrid approach with a chaotic mapping-based hybrid algorithm of artificial fish swarm algorithm (AFSA) and genetic algorithm (GA) was developed to find an optimal or near-optimal disassembly sequence.

Findings

Numerical experiment with case study on end-of-life product disassembly planning has been carried out to demonstrate the effectiveness of the designed criteria and the results exhibited that the developed algorithm performs better than other relevant algorithms.

Research limitations/implications

More complex case studies for DSP problems will be introduced. The performance of the CAAFG algorithm can be enhanced by improving the design of AFSA and GA by combining them with other search techniques.

Practical implications

DSP of an internal gear hydraulic pump is analyzed to investigate the accuracy and efficiency of the proposed method.

Originality/value

This paper proposes a novel CAAFG algorithm for solving DSP problems. The implemented tool generates a feasible optimal solution and the considered criteria can help the planer obtain satisfactory results.

Details

Assembly Automation, vol. 39 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 March 2021

Mehran Mahmoudi Motahar and Seyed Hossein Hosseini Nourzad

A successful adaptive reuse process relies heavily on the strong performance of disassembly sequence planning (DSP), yet the studies in the field are limited to sequential…

Abstract

Purpose

A successful adaptive reuse process relies heavily on the strong performance of disassembly sequence planning (DSP), yet the studies in the field are limited to sequential disassembly planning (SDP). Since in sequential disassembly, one component or subassembly is removed with only one manipulator at a time, it can be a relatively inefficient and lengthy process for large or complex assemblies and cannot fully utilize the DSP benefits for adaptive reuse of buildings. This study aims to present a new hybrid method for the single-target selective DSP that supports both sequential and parallel approaches.

Design/methodology/approach

This study uses asynchronous parallel selective disassembly planning (aPDP) method, one of the newest and most effective parallel approaches in the manufacturing industry, to develop a parallel approach toward DSP in adaptive reuse of buildings. In the proposed method, three objectives (i.e. disassembly sequence time, cost and environmental impacts) are optimized using the Non-dominated Sorting Genetic Algorithm (NSGA-II).

Findings

The proposed method can generate feasible sequential solutions for multi-objective DSP problems as the sequence disassembly planning for buildings (SDPB) method, and parallel solutions lead to 17.6–23.4% time reduction for understudy examples. Moreover, in disassembly planning problems with more complex relations, the parallel approach generates more effective and time-efficient sequences.

Originality/value

This study introduces the parallel approach for the first time in this field. In addition, it supports both sequential and parallel approaches as a novel strategy that enables the decision-makers to select the optimum approach (i.e. either the parallel or the sequential approach) for DSP. Moreover, a metaheuristic method (i.e. NSGA-II) is adopted as the optimization tool with robust results in the field in which those heuristic methods have only been employed in the past.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Book part
Publication date: 6 November 2013

Can B. Kalayci and Surendra M. Gupta

Disturbing increase in the use of virgin resources to produce new products has threatened the environment. Many countries have reacted to this situation through regulations which…

Abstract

Disturbing increase in the use of virgin resources to produce new products has threatened the environment. Many countries have reacted to this situation through regulations which aim to eliminate negative impact of products on the environment shaping the concept of environmentally conscious manufacturing and product recovery (ECMPRO). The first crucial and the most time-consuming step of product recovery is disassembly. The best productivity rate is achieved via a disassembly line in an automated disassembly process. In this chapter, we consider a sequence-dependent disassembly line balancing problem (SDDLBP) with multiple objectives that is concerned with the assignment of disassembly tasks to a set of ordered disassembly workstations while satisfying the disassembly precedence constraints and optimizing the effectiveness of several measures considering sequence-dependent time increments among disassembly tasks. Due to the high complexity of the SDDLBP, there is currently no known way to optimally solve even moderately sized instances of the problem. Therefore, an efficient methodology based on the simulated annealing (SA) is proposed to solve the SDDLBP. Case scenarios are considered and comparisons with ant colony optimization (ACO), particle swarm optimization (PSO), river formation dynamics (RFD), and tabu search (TS) approaches are provided to demonstrate the superior functionality of the proposed algorithm.

Details

Applications of Management Science
Type: Book
ISBN: 978-1-78190-956-0

Keywords

Article
Publication date: 8 March 2013

Can B. Kalayci and Surendra M. Gupta

The purpose of this paper is to introduce sequence‐dependent disassembly line balancing problem (SDDLBP) to the literature and propose an efficient metaheuristic solution…

Abstract

Purpose

The purpose of this paper is to introduce sequence‐dependent disassembly line balancing problem (SDDLBP) to the literature and propose an efficient metaheuristic solution methodology to this NP‐complete problem.

Design/methodology/approach

This manuscript utilizes a well‐proven metaheuristics solution methodology, namely, ant colony optimization, to address the problem.

Findings

Since SDDLBP is NP‐complete, finding an optimal balance becomes computationally prohibitive due to exponential growth of the solution space with the increase in the number of parts. The proposed methodology is very fast, generates (near) optimal solutions, preserves precedence requirements and is easy to implement.

Practical implications

Since development of cost effective and profitable disassembly systems is an important issue in end‐of‐life product treatment, every step towards improving disassembly line balancing brings us closer to cost savings and compelling practicality.

Originality/value

This paper introduces a new problem (SDDLBP) and an efficient solution to the literature.

Article
Publication date: 28 January 2014

Xiaowen Song, Weidong Zhou, Xingxing Pan and Kun Feng

To improve the efficiency and economy of electro-mechanical product's recycle process, this paper aims to propose a disassembly sequence planning (DSP) method to reduce additional…

Abstract

Purpose

To improve the efficiency and economy of electro-mechanical product's recycle process, this paper aims to propose a disassembly sequence planning (DSP) method to reduce additional efforts of removing extra parts in selectable disassembly.

Design/methodology/approach

The methodology has three parts, which includes a disassembly hybrid graphic model to describe the product disassembly information, an object inverse-directed method to optimize the disassembly design and a model reconstruction method to achieve a better DSP.

Findings

According to the disassembly cost criteria and the parameters of disassembly tools, the disassembly efficiency increases and the disassembly cost decreases due to the use of partial destructive mode compared with non-destructive mode. The proposed partial destructive DSP is more efficient and economical.

Research limitations/implications

Partial destructive disassembly mode cannot be used for the flammable or explosive component in the procedure of the DSP optimization algorithm.

Practical implications

DSP of an electric corkscrew is analyzed to investigate the accuracy and efficiency of the proposed method.

Originality/value

This paper proposes a partial destructive disassembly based DSP method for product disassembly, which provides a new approach for the disposal of end-of-life products.

Details

Assembly Automation, vol. 34 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 15 February 2013

Hui Wang, Dong Xiang, Yiming Rong and Linxuan Zhang

The purpose of this paper is to review the fundamental methodology and its development of intelligent disassembly planning research.

Abstract

Purpose

The purpose of this paper is to review the fundamental methodology and its development of intelligent disassembly planning research.

Design/methodology/approach

Following a brief introduction, this paper first discusses the fundamental problems associated with disassembly planning and analysis. And then considers the role of intelligent optimization methods in the disassembly planning field. This is followed by a summary and conclusion.

Findings

Many advances have been made in computerized intelligent disassembly planning research, which is a natural evolutionary result of both traditional solving methodology and much research effort over past two decades. But as yet, some fundamental limitations are also rooted in this computational model‐based methodology.

Originality/value

The paper provides a fundamental review on the development of computerized intelligent disassembly planning research.

Details

Assembly Automation, vol. 33 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Book part
Publication date: 15 August 2006

Seamus M. McGovern and Surendra M. Gupta

Disassembly takes place in remanufacturing, recycling, and disposal, with a line being the best choice for automation. The disassembly line balancing problem seeks a sequence that…

Abstract

Disassembly takes place in remanufacturing, recycling, and disposal, with a line being the best choice for automation. The disassembly line balancing problem seeks a sequence that is feasible, minimizes the number of workstations, and ensures similar idle times, as well as other end-of-life specific concerns. Finding the optimal balance is computationally intensive due to exponential growth. Combinatorial optimization methods hold promise for providing solutions to the problem, which is proven here to be NP-hard. Stochastic (genetic algorithm) and deterministic (greedy/hill-climbing hybrid heuristic) methods are presented and compared. Numerical results are obtained using a recent electronic product case study.

Details

Applications of Management Science: In Productivity, Finance, and Operations
Type: Book
ISBN: 978-0-85724-999-9

1 – 10 of 285