Search results

1 – 10 of over 11000
Article
Publication date: 1 February 2002

W. Song and B.Q. Li

This paper describes the finite element solution of conjugate heat transfer problems with and without the use of gap elements. Direct and iterative methods to incorporate gap…

2189

Abstract

This paper describes the finite element solution of conjugate heat transfer problems with and without the use of gap elements. Direct and iterative methods to incorporate gap elements into a general finite element program are presented, along with their advantages and disadvantages of the two gap element treatments in the framework of finite elements. The numerical performance of the iterative gap element treatment is discussed in detail in comparison with analytical solutions for both 2‐ and 3‐D gap conductance problems. Numerical tests show that the number of iterations depends on the non‐dimensional number Bi = hL/k, and it increases approximately linearly with Bi for Bi≥0.6. Here, for gap heat transfer problems, h is taken to be the inverse of the contact resistance. This conclusion holds true for both 2‐ and 3‐D problems, for both linear and quadratic elements and for both transient and steady state calculations. Further numerical results for conjugate heat transfer problems encountered in heat exchanger and micro chemical reactors are computed using the gap element approach, the direct numerical simulations and analytical solutions whenever solvable. The results reveal that for the standard heat exchanger designs, an accurate prediction of temperature distribution in the moving streams must take into consideration the radial temperature distribution and the accuracy of the calculations depends on the non‐dimensional number Bi = hR/2k. From gap element calculations, it is found that classical analytical solutions are valid for a heat transfer analysis of an exchanger system, only when Bi<0.1. This important point so far has been neglected in virtually all the textbooks on heat transfer and must be included to complete the heat transfer theory for heat exchanger designs. Results also suggest that for thermal fluids systems with chemical reactions such as micro fuel cells, the gap element approach yields accurate results only when the heat transfer coefficient that accounts for the chemical reactions is used. However, when these heat transfer coefficients are not available, direct numerical simulations should be used for an accurate prediction of the thermal performance of these systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1995

C.C. Hao and J.N. Chung

This paper seeks to increase our understanding on the fluid mechanicsand heat transfer in a transitional mixed convection flow between twovertical plates. Direct numerical

Abstract

This paper seeks to increase our understanding on the fluid mechanics and heat transfer in a transitional mixed convection flow between two vertical plates. Direct numerical simulation by the spectral method, with a weak formulation, is used to solve the transient 3–D Navier‐Stokes equations and energy equation. Initial disturbances consist of the finite‐amplitude 2–D Tollmien‐Schlichting wave and two 3–D oblique waves. The transition phenomena in a mixed‐convection flow can be significantly different from the isothermal flow. Disturbance competitions among different modes are also found to be different from those known for an isothermal flow. In a mixed‐convection flow, there exist thresholds for the low‐mode Fourier waves. The intensified vortices are concentrated left of the central surface between the two plates. Hairpin vortices are formed with high Ri. Based on the flow visualization, the λ vortices are found to be staggered on the surfaces parallel to the plates. The Ri number seems to be the main parameter governing the transition mechanism. The Nu number is found to increase during transition.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2014

Tomomi Uchiyama, Yutaro Yoshii and Hirotaka Hamada

This study is concerned with the direct numerical simulation (DNS) of a turbulent channel flow by an improved vortex in cell (VIC) method. The paper aims to discuss these issues…

Abstract

Purpose

This study is concerned with the direct numerical simulation (DNS) of a turbulent channel flow by an improved vortex in cell (VIC) method. The paper aims to discuss these issues.

Design/methodology/approach

First, two improvements for VIC method are proposed to heighten the numerical accuracy and efficiency. A discretization method employing a staggered grid is presented to ensure the consistency among the discretized equations as well as to prevent the numerical oscillation of the solution. A correction method for vorticity is also proposed to compute the vorticity field satisfying the solenoidal condition. Second, the DNS for a turbulent channel flow is conducted by the improved VIC method. The Reynolds number based on the friction velocity and the channel half width is 180.

Findings

It is highlighted that the simulated turbulence statistics, such as the mean velocity, the Reynolds shear stress and the budget of the mean enstrophy, agree well with the existing DNS results. It is also shown that the organized flow structures in the near-wall region, such as the streaks and the streamwise vortices, are favourably captured. These demonstrate the high applicability of the improved VIC method to the DNS for wall turbulent flows.

Originality/value

This study enables the VIC method to perform the DNS for wall turbulent flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2015

Tao Sun, Weizhong Li and Bo Dong

The purpose of this paper is to test the feasibility of lattice Boltzmann method (LBM) for numerical simulation of nucleate boiling and transition boiling. In addition, the…

Abstract

Purpose

The purpose of this paper is to test the feasibility of lattice Boltzmann method (LBM) for numerical simulation of nucleate boiling and transition boiling. In addition, the processes of nucleate and transition boiling on vertical wall are simulated. The heat transfer mechanism is discussed based on the evolution of temperature field.

Design/methodology/approach

In this paper, nucleate boiling and transition boiling are numerically investigated by LBM. A lattice Boltzmann (LB) multiphase model combining with a LB thermal model is used to predict the phase-change process.

Findings

Numerical results are in good agreement with existing experimental results. Numerical results confirm the feasibility of the hybrid LBM for direct simulations of nucleate and transition boiling. The data exhibit correct parametric dependencies of bubble departure diameter compared with experimental correlation and relevant references.

Research limitations/implications

All the simulations are performed in two-dimensions in this paper. In the future work, the boiling process will be simulated in three-dimensional.

Practical implications

This study demonstrated a potential model that can be applied to the investigation of phase change heat transfer, which is one of the effective techniques for enhance the heat transfer in engineering. The numerical results can be considered as a basic work or a reference for generalizing LB method in the practical application about nucleate boiling and transition boiling.

Originality/value

The hybrid LBM is first used for simulation of nucleate and transition boiling on vertical surface. Heat transfer mechanism during boiling is discussed based on the numerical results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2019

Cheng Zhong and Alexandra Komrakova

This paper aims to demonstrate the capabilities of a diffuse interface free energy lattice Boltzmann method to perform direct numerical simulations of liquid–liquid dispersions in…

210

Abstract

Purpose

This paper aims to demonstrate the capabilities of a diffuse interface free energy lattice Boltzmann method to perform direct numerical simulations of liquid–liquid dispersions in a well-controlled turbulent environment. The goal of this research study is to develop numerical techniques that can visualize and quantify drop interaction with the turbulent vortices. The obtained information will be used for the development of sub-models of drop breakup for multi-scale simulations.

Design/methodology/approach

A pure binary liquid system is considered that is subject to fully developed statistically stationary turbulent flow field in a cubic fully periodic box with the edge size of 300 lattice units. Three turbulent flow fields with varying energy input are examined and their coherent structures are visualized using a normalized Q-criterion. The evolution of the liquid–liquid interface is tracked as a function of time. The detailed explanation of the numerical method is provided with a highlight on a choice of the numerical parameters.

Findings

Drop breakup mechanisms differ depending on energy input. Drops break due to interaction with the vortices. Quantification of turbulent structures shows that the size of vortices increases with the decrease of energy input. Drop interacts simultaneously with multiple vortices of the size comparable to or smaller than the drop size. Vortices of the size smaller than the drop size disturb drop interface and pinch off the satellites. Vortices of the size comparable to the drop size tend to elongate the drop and tear it apart producing daughter drops and satellites. Addition of the second phase enhances turbulent dissipation at the high wavenumbers. To obtain physically realistic two-phase energy spectra, the multiple-relaxation-time collision operator should be used.

Originality/value

Detailed information of drop breakup in the turbulent flow field is crucial for the development of drop breakup sub-models that are necessary for multi-scale numerical simulations. The improvement of numerical methods that can provide these data and produce reliable results is important. This work made one step towards a better understanding of how drops interact with the turbulent vortices.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2017

Seyi F. Olatoyinbo, Sarma L. Rani and Abdelkader Frendi

The purpose of this study is to investigate the accuracy and applicability of the Flowfield Dependent Variation (FDV) method for large-eddy simulations (LES) of decaying isotropic…

Abstract

Purpose

The purpose of this study is to investigate the accuracy and applicability of the Flowfield Dependent Variation (FDV) method for large-eddy simulations (LES) of decaying isotropic turbulence.

Design/methodology/approach

In an earlier paper, the FDV method was successfully demonstrated for simulations of laminar flows with speeds varying from low subsonic to high supersonic Mach numbers. In the current study, the FDV method, implemented in a finite element framework, is used to perform LESs of decaying isotropic turbulence. The FDV method is fundamentally derived from the Lax–Wendroff Scheme (LWS) by replacing the explicit time derivatives in LWS with a weighted combination of explicit and implicit time derivatives. The increased implicitness and the inherent numerical dissipation of FDV contribute to the scheme’s numerical stability and monotonicity. Understanding the role of numerical dissipation that is inherent to the FDV method is essential for the maturation of FDV into a robust scheme for LES of turbulent flows. Accordingly, three types of LES of decaying isotropic turbulence were performed. The first two types of LES utilized explicit subgrid scale (SGS) models, namely, the constant-coefficient Smagorinsky and dynamic Smagorinsky models. In the third, no explicit SGS model was employed; instead, the numerical dissipation inherent to FDV was used to emulate the role played by explicit SGS models. Such an approach is commonly known as Implicit LES (ILES). A new formulation was also developed for quantifying the FDV numerical viscosity that principally arises from the convective terms of the filtered Navier–Stokes equations.

Findings

The temporal variation of the turbulent kinetic energy and enstrophy and the energy spectra are presented and analyzed. At all grid resolutions, the temporal profiles of kinetic energy showed good agreement with t(−1.43) theoretical scaling in the fully developed turbulent flow regime, where t represents time. The energy spectra also showed reasonable agreement with the Kolmogorov’s k(−5/3) power law in the inertial subrange, with the spectra moving closer to the Kolmogorov scaling at higher-grid resolutions. The intrinsic numerical viscosity and the dissipation rate of the FDV scheme are quantified, both in physical and spectral spaces, and compared with those of the two SGS LES runs. Furthermore, at a finite number of flow realizations, the numerical viscosities of FDV and of the Streamline Upwind/Petrov–Galerkin (SUPG) finite element method are compared. In the initial stages of turbulence development, all three LES cases have similar viscosities. But, once the turbulence is fully developed, implicit LES is less dissipative compared to the two SGS LES runs. It was also observed that the SUPG method is significantly more dissipative than the three LES approaches.

Research limitations/implications

Just as any computational method, the limitations are based on the available computational resources.

Practical implications

Solving problems involving turbulent flows is by far the biggest challenge facing engineers and scientists in the twenty-first century, this is the road that the authors have embarked upon in this paper and the road ahead of is very long.

Social implications

Understanding turbulence is a very lofty goal and a challenging one as well; however, if the authors succeed, the rewards are limitless.

Originality/value

The derivation of an explicit expression for the numerical viscosity tensor of FDV is an important contribution of this study, and is a crucial step forward in elucidating the fundamental properties of the FDV method. The comparison of viscosities for the three LES cases and the SUPG method has important implications for the application of ILES approach for turbulent flow simulations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2002

K. Han, D.R.J. Owen and D. Peric

Because of the unrealistic demand of computer resources in terms of memory and CPU times for the direct numerical simulation of practical peen forming processes, a two‐stage…

1209

Abstract

Because of the unrealistic demand of computer resources in terms of memory and CPU times for the direct numerical simulation of practical peen forming processes, a two‐stage combined finite/discrete element and explicit/implicit solution strategy is proposed in this paper. The procedure involves, at the first stage, the identification of the residual stress/strain profile under particular peening conditions by employing the combined finite/discrete approach on a small scale sample problem, and then at the second stage, the application of this profile to the entire workpiece to obtain the final deformation and stress distribution using an implicit static analysis. The motivation behind the simulation strategy and the relevant computational and implementation issues are discussed. The numerical example demonstrates the ability of the proposed scheme to simulate a peen forming process.

Details

Engineering Computations, vol. 19 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 July 2019

Dhanush Vittal Shenoy, Mostafa Safdari Shadloo, Jorge Peixinho and Abdellah Hadjadj

Fluid flows in pipes whose cross-sectional area are increasing in the stream-wise direction are prone to separation of the recirculation region. This paper aims to investigate…

Abstract

Purpose

Fluid flows in pipes whose cross-sectional area are increasing in the stream-wise direction are prone to separation of the recirculation region. This paper aims to investigate such fluid flow in expansion pipe systems using direct numerical simulations. The flow in circular diverging pipes with different diverging half angles, namely, 45, 26, 14, 7.2 and 4.7 degrees, are considered. The flow is fed by a fully developed laminar parabolic velocity profile at its inlet and is connected to a long straight circular pipe at its downstream to characterise recirculation zone and skin friction coefficient in the laminar regime. The flow is considered linearly stable for Reynolds numbers sufficiently below natural transition. A perturbation is added to the inlet fully developed laminar velocity profile to test the flow response to finite amplitude disturbances and to characterise sub-critical transition.

Design/methodology/approach

Direct numerical simulations of the Navier–Stokes equations have been solved using a spectral element method.

Findings

It is found that the onset of disordered motion and the dynamics of the localised turbulence patch are controlled by the Reynolds number, the perturbation amplitude and the half angle of the pipe.

Originality/value

The authors clarify different stages of flow behaviour under the finite amplitude perturbations and shed more light to flow physics such as existence of Kelvin–Helmholtz instabilities as well as mechanism of turbulent puff shedding in diverging pipe flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2017

Alain Fossi and Alain DeChamplain

Safety improvement and pollutant reduction in many practical combustion systems and especially in aero-gas turbine engines require an adequate understanding of flame ignition and…

Abstract

Purpose

Safety improvement and pollutant reduction in many practical combustion systems and especially in aero-gas turbine engines require an adequate understanding of flame ignition and stabilization mechanisms. Improved software and hardware have opened up greater possibilities for translating basic knowledge and the results of experiments into better designs. The present study deals with the large eddy simulation (LES) of an ignition sequence in a conical shaped bluff-body stabilized burner involving a turbulent non-premixed flame. The purpose of this paper is to investigate the impact of spark location on ignition success. Particular attention is paid to the ease of handling of the numerical tool, the computational cost and the accuracy of the results.

Design/methodology/approach

The discrete particle ignition kernel (DPIK) model is used to capture the ignition kernel dynamics in its early stage of growth after the breakdown period. The ignition model is coupled with two combustion models based on the mixture fraction-progress variable formulation. An infinitely fast chemistry assumption is first done, and the turbulent fluctuations of the progress variable are captured with a bimodal probability density function (PDF) in the line of the Bray–Moss–Libby (BML) model. Thereafter, a finite rate chemistry assumption is considered through the flamelet-generated manifold (FGM) method. In these two assumptions, the classical beta-PDF is used to model the temporal fluctuations of the mixture fraction in the turbulent flow. To model subgrid scale stresses and residual scalars fluxes, the wall-adapting local eddy (WALE) and the eddy diffusivity models are, respectively, used under the low-Mach number assumption.

Findings

Numerical results of velocity and mixing fields, as well as the ignition sequences, are validated through a comparison with their experimental counterparts. It is found that by coupling the DPIK model with each of the two combustion models implemented in a LES-based solver, the ignition event is reasonably predicted with further improvements provided by the finite rate chemistry assumption. Finally, the spark locations most likely to lead to a complete ignition of the burner are found to be around the shear layer delimiting the central recirculation zone, owing to the presence of a mixture within flammability limits.

Research limitations/implications

Some discrepancies are found in the radial profiles of the radial velocity and consequently in those of the mixture fraction, owing to a mismatch of the radial velocity at the inlet section of the computational domain. Also, unlike FGM methods, the BML model predicts the overall ignition earlier than suggested by the experiment; this may be related to the overestimation of the reaction rate, especially in the zones such as flame holder wakes which feature high strain rate due to fuel-air mixing.

Practical implications

This work is adding a contribution for ignition modeling, which is a crucial issue in various combustion systems and especially in aircraft engines. The exclusive use of a commercial computational fluid dynamics (CFD) code widely used by combustion system manufacturers allows a direct application of this simulation approach to other configurations while keeping computing costs at an affordable level.

Originality/value

This study provides a robust and simple way to address some ignition issues in various spark ignition-based engines, namely, the optimization of engines ignition with affordable computational costs. Based on the promising results obtained in the current work, it would be relevant to extend this simulation approach to spray combustion that is required for aircraft engines because of storage volume constraints. From this standpoint, the simulation approach formulated in the present work is useful to engineers interested in optimizing the engines ignition at the design stage.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 1998

Shin‐ichi Satake and Tomoaki Kunugi

A direct numerical simulation code with cylindrical geometry has been developed. A direct numerical simulation (DNS) of an impinging round jet into parallel disks is performed for…

1243

Abstract

A direct numerical simulation code with cylindrical geometry has been developed. A direct numerical simulation (DNS) of an impinging round jet into parallel disks is performed for a Reynolds number of 10,000 based on the nozzle exit velocity and the nozzle diameter (D). Mean flow variables, turbulent intensity, pressure distribution and turbulent kinetic energy budgets are obtained at various radial locations. The present DNS results are in fairly good agreement with the two‐dimensional PTV measurements by Nishino and co‐workers in 1996. Some flow features of this impinging round jet regarding a turbulent transition process are discussed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 11000