Search results

1 – 10 of 234
Article
Publication date: 19 July 2019

Dhanush Vittal Shenoy, Mostafa Safdari Shadloo, Jorge Peixinho and Abdellah Hadjadj

Fluid flows in pipes whose cross-sectional area are increasing in the stream-wise direction are prone to separation of the recirculation region. This paper aims to investigate…

Abstract

Purpose

Fluid flows in pipes whose cross-sectional area are increasing in the stream-wise direction are prone to separation of the recirculation region. This paper aims to investigate such fluid flow in expansion pipe systems using direct numerical simulations. The flow in circular diverging pipes with different diverging half angles, namely, 45, 26, 14, 7.2 and 4.7 degrees, are considered. The flow is fed by a fully developed laminar parabolic velocity profile at its inlet and is connected to a long straight circular pipe at its downstream to characterise recirculation zone and skin friction coefficient in the laminar regime. The flow is considered linearly stable for Reynolds numbers sufficiently below natural transition. A perturbation is added to the inlet fully developed laminar velocity profile to test the flow response to finite amplitude disturbances and to characterise sub-critical transition.

Design/methodology/approach

Direct numerical simulations of the Navier–Stokes equations have been solved using a spectral element method.

Findings

It is found that the onset of disordered motion and the dynamics of the localised turbulence patch are controlled by the Reynolds number, the perturbation amplitude and the half angle of the pipe.

Originality/value

The authors clarify different stages of flow behaviour under the finite amplitude perturbations and shed more light to flow physics such as existence of Kelvin–Helmholtz instabilities as well as mechanism of turbulent puff shedding in diverging pipe flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 15 January 2020

Mostafa Safdari Shadloo, Mohammad Reza Safaei and Manuel Hopp-Hirschler

443

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 26 September 2019

Zhe Tian, Ali Abdollahi, Mahmoud Shariati, Atefeh Amindoust, Hossein Arasteh, Arash Karimipour, Marjan Goodarzi and Quang-Vu Bach

This paper aims to study the fluid flow and heat transfer through a spiral double-pipe heat exchanger. Nowadays using spiral double-pipe heat exchangers has become popular in…

Abstract

Purpose

This paper aims to study the fluid flow and heat transfer through a spiral double-pipe heat exchanger. Nowadays using spiral double-pipe heat exchangers has become popular in different industrial segments due to its complex and spiral structure, which causes an enhancement in heat transfer.

Design/methodology/approach

In these heat exchangers, by converting the fluid motion to the secondary motion, the heat transfer coefficient is greater than that of the straight double-pipe heat exchangers and cause increased heat transfer between fluids.

Findings

The present study, by using the Fluent software and nanofluid heat transfer simulation in a spiral double-tube heat exchanger, investigates the effects of operating parameters including fluid inlet velocity, volume fraction of nanoparticles, type of nanoparticles and fluid inlet temperature on heat transfer efficiency.

Originality/value

After presenting the results derived from the fluid numerical simulation and finding the optimal performance conditions using a genetic algorithm, it was found that water–Al2O3 and water–SiO2 nanofluids are the best choices for the Reynolds numbers ranging from 10,551 to 17,220 and 17,220 to 31,910, respectively.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2021

Faheem Ejaz, William Pao and Hafiz Muhammad Ali

Offshore industries encounter severe production downtime due to high liquid carryovers in the T-junction. The diameter ratio and flow regime can significantly affect the excess…

204

Abstract

Purpose

Offshore industries encounter severe production downtime due to high liquid carryovers in the T-junction. The diameter ratio and flow regime can significantly affect the excess liquid carryovers. Unfortunately, regular and reduce T-junctions have low separation efficiencies. Ansys as a commercial computational fluid dynamics (CFD) software was used to model and numerically inspect a novel diverging T-junction design. The purpose of diverging T-junction is to merge the specific characteristics of regular and reduced T-junctions, ultimately increasing separation efficiency. The purpose of this study is to numerically compute the separation efficiency for five distinct diverging T-junctions for eight different velocity ratios. The results were compared to regular and converging T-junctions.

Design/methodology/approach

Air-water slug flow was simulated with the help of the volume of the fluid model, coupled with the K-epsilon turbulence model to track liquid-gas interfaces.

Findings

The results of this study indicated that T-junctions with upstream and downstream diameter ratio combinations of 0.8–1 and 0.5–1 achieved separation efficiency of 96% and 94.5%, respectively. These two diverging T-junctions had significantly higher separation efficiencies when compared to regular and converging T-junctions. Results also revealed that over-reduction of upstream and downstream diameter ratios below 0.5 and 1, respectively, lead to declination in separation efficiency.

Research limitations/implications

The present study is constrained for air and water as working fluids. Nevertheless, the results apply to other applications as well.

Practical implications

The proposed T-junction is intended to reduce excessive liquid carryovers and frequent plant shutdowns. Thus, lowering operational costs and enhancing separation efficiency.

Social implications

Higher separation efficiency achieved by using diverging T-junction enabled reduced production downtimes and resulted in lower maintenance costs.

Originality/value

A novel T-junction design was proposed in this study with a separation efficiency of higher than 90%. High separation efficiency eliminates loss of time during shutdowns and lowers maintenance costs. Furthermore, limitations of this study were also addressed as the lower upstream and downstream diameter ratio does not always enhance separation efficiency.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 April 2022

Faheem Ejaz, William Pao and Hafiz Muhammad Ali

In plethora of petroleum, chemical and heat transfer applications, T-junction is often used to partially separate gas from other fluids, to reduce work burden on other separating…

Abstract

Purpose

In plethora of petroleum, chemical and heat transfer applications, T-junction is often used to partially separate gas from other fluids, to reduce work burden on other separating equipment. The abundance of liquid carryovers from the T-junction side arm is the cause of production downtime in terms of frequent tripping of downstream equipment train. Literature review revealed that regular and reduced T-junctions either have high peak liquid carryovers (PLCs) or the liquid appears early in the side arm [liquid carryover threshold (LCT)]. The purpose of this study is to harvest the useful features of regular and reduced T-junction and analyze diverging T-junction having upstream and downstream pipes.

Design/methodology/approach

Volume of fluid as a multiphase model, available in ANSYS Fluent, was used to simulate air–water slug flow in five diverging T-junctions for eight distinct velocity ratios. PLCs and LCT were chosen as key performance indices.

Findings

The results indicated that T (0.5–1) and (0.8–1) performed better as low liquid carryovers and high LCT were achieved having separation efficiencies of 96% and 94.5%, respectively. These two diverging T-junctions had significantly lower PLCs and high LCT when compared to other three T-junctions. Results showed that the sudden reduction in the side arm diameter results in high liquid carryovers and lower LCT. Low water and air superficial velocities tend to have low PLC and high LCT.

Research limitations/implications

This study involved working fluids air and water but applies to other types of fluids as well.

Practical implications

The novel T-junction design introduced in this study has significantly higher LCT and lower PLC. This is an indication of higher phase separation performance as compared to other types of T-junctions. Because of lower liquid take-offs, there will be less frequent downstream equipment tripping resulting in lower maintenance costs. Empirical correlations presented in this study can predict fraction of gas and liquid in the side arm without having to repeat the experiment.

Social implications

Maintenance costs and production downtime can be significantly reduced with the implication of diverging T-junction design.

Originality/value

The presented study revealed that the diameter ratio has a significant impact on PLC and LCT. It can be concluded that novel T-junction designs, T2 and T3, achieved high phase separation; therefore, it is favorable to use in the industry. Furthermore, a few limitations in terms of diameter ratio are also discussed in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 December 2019

Huawei Wu, Peyman Torkian, Amir Zarei, Iman Moradi, Arash Karimipour and Masoud Afrand

This paper aims to investigate atoms type and channel roughness effects on fluid behavior in nanochannel.

Abstract

Purpose

This paper aims to investigate atoms type and channel roughness effects on fluid behavior in nanochannel.

Design/methodology/approach

The results of mechanical properties of these structures are reported in this work by using molecular dynamics method.

Findings

The results show that nanochannel roughness is a limiting factor in flowing fluid in nanochannel. Moreover, fluids with less atomic weight have more free movement in ideal and non-ideal nanochannels.

Originality/value

For the study of mechanical properties of fluid/nanochannel system, the authors calculated parameters such as potential energy, density, temperature and velocity profiles of simulated fluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 December 2019

Yeping Peng, Ghasem Bahrami, Hossein Khodadadi, Alireza Karimi, Ahmad Soleimani, Arash Karimipour and Sara Rostami

The purpose of this study is simulation of of polymer electrolyte membrane fuel cell. Proton-exchange membrane fuel cells are promising power sources for use in power plants and…

Abstract

Purpose

The purpose of this study is simulation of of polymer electrolyte membrane fuel cell. Proton-exchange membrane fuel cells are promising power sources for use in power plants and vehicles. These fuel cells provide a high level of energy efficiency at low temperature without any pollution. The convection inside the cell plays a key role in the electrochemical reactions and the performance of the cell. Accordingly, the transport processes in these cells have been investigated thoroughly in previous studies that also carried out functional modeling.

Design/methodology/approach

A multi-phase model was used to study the limitations of the reactions and their impact on the performance of the cell. The governing equations (conservation of mass, momentum and particle transport) were solved by computational fluid dynamics (CFD) (ANSYS fluent) using appropriate source terms. The two-phase flow in the fuel cell was simulated three-dimensionally under steady-state conditions. The flow of water inside the cell was also simulated at high-current density.

Findings

The simulation results suggested that the porosity of the gas diffusion layer (GDL) is one of the most important design parameters with a significant impact on the current density limitation and, consequently, on the cell performance.

Originality/value

This study was mainly focused on the two-phase analysis of the steady flow in the fuel cell and on investigating the impacts of a two-phase flow on the performance of the cell and also on the flow in the GDL, the membrane and the catalyst layer using the CFD.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 August 2019

Seyed Ali Atyabi, Ebrahim Afshari and Mohammad Yaghoub Abdollahzadeh Jamalabadi

In this paper, a single module of cross-flow membrane humidifier is evaluated as a three-dimensional multiphase model. The purpose of this paper is to analyze the effect of volume…

Abstract

Purpose

In this paper, a single module of cross-flow membrane humidifier is evaluated as a three-dimensional multiphase model. The purpose of this paper is to analyze the effect of volume flow rate, dry temperature, dew point wet temperature and porosity of gas diffusion layer on the humidifier performance.

Design/methodology/approach

In this study, one set of coupled equations are continuity, momentum, species and energy conservation is considered. The numerical code is benchmarked by the comparison of numerical results with experimental data of Hwang et al.

Findings

The results reveal that the transfer rate of water vapor and dew point approach temperature (DPAT) increase by increasing the volume flow rate. Also, it is found that the water recovery ratio (WRR) and relative humidity (RH) decrease with increasing volume flow rate. In addition, all mixed results decrease with increasing dry side temperature especially at high volume flow rates and this trend in high volume flow rates is more sensible. Although the transfer rate of water vapor and DPAT increases with increasing the wet inlet temperature, WRR and RH reduce. Increasing dew point temperature effect is more sensible at the wet side is compared with the dry side. The humidification performance will be enhanced with increasing diffusion layer porosity by increasing the wet inlet dew point temperature, but has no meaningful effect on other operating parameters. The pressure drop along humidifier gas channels increases with rising flow rate, consequently, the required power of membrane humidifier will enhance.

Originality/value

According to previous studies, the three-dimensional numerical multiphase model of cross-flow membrane humidifier has not been developed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 October 2019

Reza Dadsetani, Mohammad Reza Salimpour, Mohammad Reza Tavakoli, Marjan Goodarzi and Enio Pedone Bandarra Filho

The purpose of this study is to study the simultaneous effect of embedded reverting microchannels on the cooling performance and mechanical strength of the electronic pieces.

153

Abstract

Purpose

The purpose of this study is to study the simultaneous effect of embedded reverting microchannels on the cooling performance and mechanical strength of the electronic pieces.

Design/methodology/approach

In this study, a new configuration of the microchannel heat sink was proposed based on the constructal theory to examine mechanical and thermal aspects. Initially, the thermal-mechanical behavior in the radial arrangement was analyzed, and then, by designing the first reverting channel, maximum temperature and maximum stress on the disk were decreased. After that, by creating second reverting channels, it has been shown that the piece is improved in terms of heat and mechanical strength.

Findings

Having placed the second reverting channel on the optimum location, the effect of creating the third reverting channel has been investigated. The study has shown that there is a close relationship between the maximum temperature and maximum stress in the disk as maximum temperature and maximum stress decrease in pieces with more uniform distribution channels.

Originality/value

The proposed structure has decreased the maximum temperature and maximum thermal stresses close to 35 and 50%, respectively, and also improved the mechanical strength, with and without thermal stresses, about 40 and 24%, respectively.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 March 2020

Asmaa F. Elelamy, Nasser S. Elgazery and R. Ellahi

This paper aims to investigate a mathematical model with numerical simulation for bacterial growth in the heart valve.

Abstract

Purpose

This paper aims to investigate a mathematical model with numerical simulation for bacterial growth in the heart valve.

Design/methodology/approach

For antibacterial activities and antibodies properties, nanoparticles have been used. As antibiotics are commonly thought to be homogeneously dispersed through the blood, therefore, non-Newtonian fluid of Casson micropolar blood flow in the heart valve for two dimensional with variable properties is used. The heat transfer with induced magnetic field translational attraction under the influence of slip is considered for the resemblance of the heart valve prosthesis. The numeral results have been obtained by using the Chebyshev pseudospectral method.

Findings

It is proven that vascular resistance decreases for increasing blood velocity. It is noted that when the magnetic field will be induced from the heart valve prosthesis then it may cause a decrease in vascular resistance. The unbounded molecules and antibiotic concentration that are able to penetrate the bacteria are increased by increasing values of vascular resistance. The bacterial growth density cultivates for upswing values of magnetic permeability and magnetic parameters.

Originality/value

To the best of the authors’ knowledge, this is the first study to investigate a mathematical model with numerical simulation for bacterial growth in the heart valve.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 234