Search results

1 – 10 of 659
Open Access
Article
Publication date: 3 August 2020

Rajashree Dash, Rasmita Rautray and Rasmita Dash

Since the last few decades, Artificial Neural Networks have been the center of attraction of a large number of researchers for solving diversified problem domains. Due to its…

1187

Abstract

Since the last few decades, Artificial Neural Networks have been the center of attraction of a large number of researchers for solving diversified problem domains. Due to its distinguishing features such as generalization ability, robustness and strong ability to tackle nonlinear problems, it appears to be more popular in financial time series modeling and prediction. In this paper, a Pi-Sigma Neural Network is designed for foretelling the future currency exchange rates in different prediction horizon. The unrevealed parameters of the network are interpreted by a hybrid learning algorithm termed as Shuffled Differential Evolution (SDE). The main motivation of this study is to integrate the partitioning and random shuffling scheme of Shuffled Frog Leaping algorithm with evolutionary steps of a Differential Evolution technique to obtain an optimal solution with an accelerated convergence rate. The efficiency of the proposed predictor model is actualized by predicting the exchange rate price of a US dollar against Swiss France (CHF) and Japanese Yen (JPY) accumulated within the same period of time.

Details

Applied Computing and Informatics, vol. 19 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 14 October 2019

Zhouxia Li, Zhiwen Pan, Xiaoni Wang, Wen Ji and Feng Yang

Intelligence level of a crowd network is defined as the expected reward of the network when completing the latest tasks (e.g. last N tasks). The purpose of this paper is to…

Abstract

Purpose

Intelligence level of a crowd network is defined as the expected reward of the network when completing the latest tasks (e.g. last N tasks). The purpose of this paper is to improve the intelligence level of a crowd network by optimizing the profession distribution of the crowd network.

Design/methodology/approach

Based on the concept of information entropy, this paper introduces the concept of business entropy and puts forward several factors affecting business entropy to analyze the relationship between the intelligence level and the profession distribution of the crowd network. This paper introduced Profession Distribution Deviation and Subject Interaction Pattern as the two factors which affect business entropy. By quantifying and combining the two factors, a Multi-Factor Business Entropy Quantitative (MFBEQ) model is proposed to calculate the business entropy of a crowd network. Finally, the differential evolution model and k-means clustering are applied to crowd intelligence network, and the species distribution of intelligent subjects is found, so as to achieve quantitative analysis of business entropy.

Findings

By establishing the MFBEQ model, this paper found that when the profession distribution of a crowd network is deviate less to the expected distribution, the intelligence level of a crowd network will be higher. Moreover, when subjects within the crowd network interact with each other more actively, the intelligence level of a crowd network becomes higher.

Originality/value

This paper aims to build the MFBEQ model according to factors that are related to business entropy and then uses the model to evaluate the intelligence level of a number of crowd networks.

Details

International Journal of Crowd Science, vol. 3 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

Open Access
Article
Publication date: 29 December 2017

Prasenjit Dey, Aniruddha Bhattacharya and Priyanath Das

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are…

1740

Abstract

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are very common and low frequency oscillations pose a major problem. Hence small signal stability analysis is very important for analyzing system stability and performance. Power System Stabilizers (PSS) are used in these large interconnected systems for damping out low-frequency oscillations by providing auxiliary control signals to the generator excitation input. In this paper, collective decision optimization (CDO) algorithm, a meta-heuristic approach based on the decision making approach of human beings, has been applied for the optimal design of PSS. PSS parameters are tuned for the objective function, involving eigenvalues and damping ratios of the lightly damped electromechanical modes over a wide range of operating conditions. Also, optimal locations for PSS placement have been derived. Comparative study of the results obtained using CDO with those of grey wolf optimizer (GWO), differential Evolution (DE), Whale Optimization Algorithm (WOA) and crow search algorithm (CSA) methods, established the robustness of the algorithm in designing PSS under different operating conditions.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 9 July 2021

Jianran Liu, Bing Liang and Wen Ji

Artificial intelligence is gradually penetrating into human society. In the network era, the interaction between human and artificial intelligence, even between artificial…

Abstract

Purpose

Artificial intelligence is gradually penetrating into human society. In the network era, the interaction between human and artificial intelligence, even between artificial intelligence, becomes more and more complex. Therefore, it is necessary to describe and intervene the evolution of crowd intelligence network dynamically. This paper aims to detect the abnormal agents at the early stage of intelligent evolution.

Design/methodology/approach

In this paper, differential evolution (DE) and K-means clustering are used to detect the crowd intelligence with abnormal evolutionary trend.

Findings

This study abstracts the evolution process of crowd intelligence into the solution process of DE and use K-means clustering to identify individuals who are not conducive to evolution in the early stage of intelligent evolution.

Practical implications

Experiments show that the method we proposed are able to find out individual intelligence without evolutionary trend as early as possible, even in the complex crowd intelligent interactive environment of practical application. As a result, it can avoid the waste of time and computing resources.

Originality/value

In this paper, DE and K-means clustering are combined to analyze the evolution of crowd intelligent interaction.

Details

International Journal of Crowd Science, vol. 5 no. 2
Type: Research Article
ISSN: 2398-7294

Keywords

Open Access
Article
Publication date: 28 December 2020

Roberto Grandinetti

Variation, replication and selection processes are acknowledged as key constructs in studies on how industries evolve, but no theoretical and empirical contributions have applied…

Abstract

Purpose

Variation, replication and selection processes are acknowledged as key constructs in studies on how industries evolve, but no theoretical and empirical contributions have applied these key constructs to analyzing industries in specific stages of their history. This paper aims to fill this gap, taking for reference the firm and its strategic action in particular.

Design/methodology/approach

After delineating and discussing the three processes of interest – variation, replication and selection – this paper analyzes three very different evolutionary contexts: “red” industries, that reached maturity maintaining a polypolistic structure, and that continue to evolve in this phase; the oligopolistic transformation undergone by certain industries; and the emergence of new market spaces around new products developed by firms.

Findings

Variations are mainly reactions to the competitive environment in the evolution of red industries or environment-modifying in the case of industries evolving toward an oligopoly, and in the creation of new market spaces. Horizontal replication through employee mobility prevails in red industries, while in the other two contexts firms driving the evolution raise barriers to replication, inhibiting both horizontal and vertical replication. While selection does not come about in a new market space as long as the barriers erected by the first comer remain in place, it occurs in the form of subset selection in the other two settings.

Originality/value

This paper takes an entirely novel approach and proposes a pluralist framing of how industries evolve, interpreting the different evolutionary situations on the strength of the key variables of variation, replication and selection.

Details

International Journal of Organizational Analysis, vol. 29 no. 5
Type: Research Article
ISSN: 1934-8835

Keywords

Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Article
Publication date: 3 December 2019

Masoud Kavoosi, Maxim A. Dulebenets, Olumide Abioye, Junayed Pasha, Oluwatosin Theophilus, Hui Wang, Raphael Kampmann and Marko Mikijeljević

Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting…

1561

Abstract

Purpose

Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting seaborne and inland transportation, are expected to handle the increasing amount of containers, delivered by vessels. Berth scheduling plays an important role for the total throughput of MCTs as well as the overall effectiveness of the MCT operations. This study aims to propose a novel island-based metaheuristic algorithm to solve the berth scheduling problem and minimize the total cost of serving the arriving vessels at the MCT.

Design/methodology/approach

A universal island-based metaheuristic algorithm (UIMA) was proposed in this study, aiming to solve the spatially constrained berth scheduling problem. The UIMA population was divided into four sub-populations (i.e. islands). Unlike the canonical island-based algorithms that execute the same metaheuristic on each island, four different population-based metaheuristics are adopted within the developed algorithm to search the islands, including the following: evolutionary algorithm (EA), particle swarm optimization (PSO), estimation of distribution algorithm (EDA) and differential evolution (DE). The adopted population-based metaheuristic algorithms rely on different operators, which facilitate the search process for superior solutions on the UIMA islands.

Findings

The conducted numerical experiments demonstrated that the developed UIMA algorithm returned near-optimal solutions for the small-size problem instances. As for the large-size problem instances, UIMA was found to be superior to the EA, PSO, EDA and DE algorithms, which were executed in isolation, in terms of the obtained objective function values at termination. Furthermore, the developed UIMA algorithm outperformed various single-solution-based metaheuristic algorithms (including variable neighborhood search, tabu search and simulated annealing) in terms of the solution quality. The maximum UIMA computational time did not exceed 306 s.

Research limitations/implications

Some of the previous berth scheduling studies modeled uncertain vessel arrival times and/or handling times, while this study assumed the vessel arrival and handling times to be deterministic.

Practical implications

The developed UIMA algorithm can be used by the MCT operators as an efficient decision support tool and assist with a cost-effective design of berth schedules within an acceptable computational time.

Originality/value

A novel island-based metaheuristic algorithm is designed to solve the spatially constrained berth scheduling problem. The proposed island-based algorithm adopts several types of metaheuristic algorithms to cover different areas of the search space. The considered metaheuristic algorithms rely on different operators. Such feature is expected to facilitate the search process for superior solutions.

Open Access
Article
Publication date: 8 August 2019

Sohail R. Reddy, Matthias K. Scharrer, Franz Pichler, Daniel Watzenig and George S. Dulikravich

This paper aims to solve the parameter identification problem to estimate the parameters in electrochemical models of the lithium-ion battery.

1954

Abstract

Purpose

This paper aims to solve the parameter identification problem to estimate the parameters in electrochemical models of the lithium-ion battery.

Design/methodology/approach

The parameter estimation framework is applied to the Doyle-Fuller-Newman (DFN) model containing a total of 44 parameters. The DFN model is fit to experimental data obtained through the cycling of Li-ion cells. The parameter estimation is performed by minimizing the least-squares difference between the experimentally measured and numerically computed voltage curves. The minimization is performed using a state-of-the-art hybrid minimization algorithm.

Findings

The DFN model parameter estimation is performed within 14 h, which is a significant improvement over previous works. The mean absolute error for the converged parameters is less than 7 mV.

Originality/value

To the best of the authors’ knowledge, application of a hybrid optimization framework is new in the field of electrical modelling of lithium-ion cells. This approach saves much time in parameterization of models with a high number of parameters while achieving a high-quality fit.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Abstract

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Open Access
Article
Publication date: 7 October 2021

Jianran Liu and Wen Ji

In recent years, with the increase in computing power, artificial intelligence can gradually be regarded as intelligent agents and interact with humans, this interactive network…

Abstract

Purpose

In recent years, with the increase in computing power, artificial intelligence can gradually be regarded as intelligent agents and interact with humans, this interactive network has become increasingly complex. Therefore, it is necessary to model and analyze this complex interactive network. This paper aims to model and demonstrate the evolution of crowd intelligence using visual complex networks.

Design/methodology/approach

This paper uses the complex network to model and observe the collaborative evolution behavior and self-organizing system of crowd intelligence.

Findings

The authors use the complex network to construct the cooperative behavior and self-organizing system in crowd intelligence. Determine the evolution mode of the node by constructing the interactive relationship between nodes and observe the global evolution state through the force layout.

Practical implications

The simulation results show that the state evolution map can effectively simulate the distribution, interaction and evolution of crowd intelligence through force layout and the intelligent agents’ link mode the authors proposed.

Originality/value

Based on the complex network, this paper constructs the interactive behavior and organization system in crowd intelligence and visualizes the evolution process.

Details

International Journal of Crowd Science, vol. 5 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

1 – 10 of 659