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Abstract
Purpose – This paper aims to solve the parameter identification problem to estimate the parameters in
electrochemical models of the lithium-ion battery.
Design/methodology/approach – The parameter estimation framework is applied to the Doyle-Fuller-
Newman (DFN) model containing a total of 44 parameters. The DFN model is fit to experimental data obtained
through the cycling of Li-ion cells. The parameter estimation is performed by minimizing the least-squares
difference between the experimentally measured and numerically computed voltage curves. The minimization is
performed using a state-of-the-art hybridminimization algorithm.
Findings – The DFN model parameter estimation is performed within 14 h, which is a significant
improvement over previous works. The mean absolute error for the converged parameters is less than 7mV.
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Originality/value – To the best of the authors’ knowledge, application of a hybrid optimization framework is
new in the field of electrical modelling of lithium-ion cells. This approach saves much time in parameterization of
models with a high number of parameters while achieving a high-quality fit.

Keywords Multiphysics, Differential evolution, Optimal design, Finite element method,
Evolution strategies, Material modelling

Paper type Research paper

1. Introduction
The applications of lithium-ion batteries have drastically increased over the past decade. With
the continuous implementation of the Li-ion (Liþ) cells in household appliances, automotive,
aerospace and defense industries, accurate modeling and simulation of them is paramount.
Accurate analysis of the battery can sometimes require the internal state of the cell to be
known. This internal state can include abstract quantities (e.g. state of charge [SoC] and state
of health, i.e. the usable capacity, power capabilities among others) and physical quantities
(e.g. potentials and concentrations). Some of these quantities can be measured through
experimentation. In several cases, the material properties of the cell can also be of interest.
These material properties sometimes cannot be measured directly and must be estimated,
often non-intrusively. This gives rise to the traditional parameter estimation problem.

Parameter estimation techniques attempt to identify certain parameters in a model using only
the model response. Parameter estimation techniques can be non-intrusive and non-destructive
depending onwhether themodel response can be obtained non-intrusively and non-destructively.
The parameter estimation problem in this work can be stated as follows: Given only the voltage,
how can thematerial properties andmodel parameters of the lithium-ion cell model be estimated?

A significant effort has been dedicated to solving the parameter estimation problem in Liþ

batteries. This literature review predominantly focuses on studies that perform the parameter
estimation offline. Schmidt et al. (2010) successfully identified 33 parameters in their
electrochemical model using a pattern search algorithm. They also used the Fisher information
to determine the identifiable parameters. Speltino et al. (2009) performed parameter identification
in a single-particle-model (SPM) to identify nine parameters. Santhanagopalan et al. (2007) used
the Levenberg–Marquardt algorithm to identify five parameters in the Doyle–Fuller–Newman
(DFN) and the single-particle-model under constant charge and discharge conditions. Scharrer
et al. (2013) made use of a space-mapping parameter surrogate model to the DFN model to
successfully identify three parameters. Their work made use of a Morris-One-At-A-Time
sensitivity analysis to identify the threemost sensitive parameters in themodel.

Forman et al. (2012) performed parameter identification of 88 parameters using a genetic
algorithm. To date, this is the latest attempt in estimating a significant number of parameters
in the DFNmodel. Recently, Jin et al. (2018) also performed sensitivity analysis to identify the
five most sensitive parameters. They then used Levenberg–Marquardt algorithm to estimate
the values of these five parameters. A parallel genetic algorithm was used by Zhang et al.
(2013) to identify 29 parameters in the pseudo-two-dimensional DFN model. They reported a
computing time of 22.3 h to identify the 29 parameters. Uddin et al. (2016) estimated a total of
three parameters in the DFNmodel using the differential evolution algorithm.

Previous works have reported solution times ranging from 22 h up to three weeks. This
work drastically accelerates the parameter estimation of several parameters in the single
particle and Newman models. In the work of Forman et al. (2012) it was stated that the
parameter estimation took approximately three weeks.

In this work, the estimation of parameters in the DFN model took approximately 14 h.
This great speed-up is due to the sophisticated minimization algorithm used to perform the
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parameter estimation. This work makes use of several minimization algorithms and
continuously switches between them to accelerate convergence and avoid local minima.

2. Electrochemical model
The dynamics of lithium-ion batteries is of a highly multi-physics nature. The physics of the
processes in Liþ cells are governed by strongly coupled, highly non-linear system of partial
differential equations.

This section presents themodel used in parameter identification.
Although simplifications can be made to the mathematical model of electrochemistry in the

Liþ battery, the simulation of such simplified processes is still computationally expensive. For
this reason, an efficient implementation of the mathematical model is needed. Owing to the
nature of materials inside a cell several simplifying assumptions have been made, often applied
in the field of battery modelling, to enable computational simulation of the electrical and
chemical processes inside a cell. One crucial assumption is made: all electrode particles are
spheres of radius Rs,i, where i [ {a, c} denotes the anode and cathode domain. This results in a
simplified one-dimensional diffusion equation, which implies uniform superficial current and
constant isotropic diffusion inside. Thus, the entire equation system may be quickly solved in
contrast to full 3D-simulations, while accurately describing the insertion process.

Figure 1 shows the model domain schematically, including the layered structure of a cell,
as well as the sub-domains annotations.

The DFN model: Each electrode is represented by homogenously distributed
spherical particles as the limiting factor, connected via electrolyte. The model equation
system results in:
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where cs denotes the concentration of lithium inside the solid electrode, r is the spheres’
radial dimension and Ds is the solid diffusion coefficient in electrode i, with Xs,i = (0, Rs,i).

Figure 1.
Schematic view of the

battery cell sub-
domains
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Owing to the homogenous distribution of the particles and the assumption of a small
dimension orthogonal to the layered structure, a single one-dimensional cut through the
electrolyte domain models the electrolyte geometry, i.e. X‘ = (0, L), Xa = (0, La) and Xc =
(L – Lc, L) (Figure 1).

The constant inner surface Ai = 3« s/Rs,i arises as the constant particle surface to particle
volume ratio, « ‘ and « s denote the active volume fraction in the liquid and solid phase,
respectively, tþ is the charge transfer constant and k (c‘) is the conductivity in the liquid
phase.

Taking into account all electrolyte and electrode quantities allows setting the particle
boundary condition to:

Ds;i
@cs;i
@ n! ¼ jBV ;i f ‘; f s;UOCP csð Þ� �

on Cs;i

jBV ;i ¼ i0 csð Þ c‘
c‘;0

exp
aF
RT

f s � f ‘ � UOCP csð Þ� �� � 

� exp
� 1� að ÞF

RT
f s � f ‘ � UOCP csð Þ� �� �!

; (2)

where f s denotes the electrode potential and UOCP(cs) is the open circuit potential of the
electrode at a given lithium concentration cs. The model of UOCP(cs) used in this work is
based on the Redlich–Kister expansion as introduced by Karthikeyan et al. (2008):

UOCP jð Þ ¼ Ê 0 þ RT
F

ln
1� j

j

� �
þ RT

F

Xn
k¼0
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 !
; (3)

where j ¼ cs=ctotal is a measure for the lithiation state of an intercalation electrode. Using the
definition of UOCP(j ), Pichler (2018) derived the exchange current density on the basis of
activity functions derived from transition theory:

i0 j sð Þ :¼ kBVexp
F
RT

j s � að ÞUOCP j sð Þ �
ðj s

0

UOCP xð Þdx

0
B@

1
CA

0
B@

1
CA (4)

We assume constant behavior of the electronic quantities in the solid domain. This permits
us to state the conservation of electric charge and current as:

ð
Xi

FAejBV ;idx ¼ Iapp (5)

where Iapp is the applied current to the cell andAe denotes the electrode cross section area.
In addition, we capture the effect of electrolyte losses by an ohmic resistance RI, such that

we may state the cell voltage ucell as the algebraic condition:

ucell ¼ IappRI þ h c þ h a; (6)
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where the cell electrodes’ overpotentials h i = f s,i – f ‘ – UOCP(cs,i) are used to simplify the
notation.

Although most of this equation system is standard in literature, the final form differs in
the liquid activity represented by c‘

c‘;0
, that is only multiplied with one of the two exponential

branches, whereas in the literature it is most often multiplied with both. The presented
version arises from the distinction of the equilibrium activity a‘,0 and the non-equilibrium
activity a‘ that is probably neglected or missed in other works.

3. Experimental setup
The measured voltage data obtained through cycling a Panasonic NCR18650B commercial
cell is used in this work.

For long term behavior, the cell is first charged at C/3 rate (C-rate = 3.35A) until the
voltage reaches 4.113V followed by a constant voltage charge at 4.113V until the current
tapered down to 160mA (�C/20 rate), then discharged at C/3 rate until 3.498V again
followed by a constant voltage discharge at 3.498V for 40min or until the current dropped
to 160mA, respectively. This is repeated three times, afterwards two full capacity
estimation cycles according to the data sheet are executed: the cell is charged at C/2 rate
until 4.2V, constant voltage charged at 4.2 V until the current dropped to C/50 rate and
discharged at 1 C rate until 2.5V. The cell is then charged to 3.498V again and discharged to
a specific SoC level for a total of seven cycles (85 per cent, 75 per cent, 65 per cent, 55
per cent, 45 per cent, 35 per cent and 25 per cent). At each level a set of current pulses are
applied such that the short term dynamic behavior of the cell is reflected as much as possible
in the voltage. The pulse sequence subsequently applies C/5, 1.25 C and 1.35C pulses in charge
(þ) and discharge (�) direction for 10 s, followed by 15min rest after each pulse. The pulse
sequence ends with a combined 5 s-pulse sequence of þC/5, þC/5, �C/5, �C/5, �1.35 C, þ1C
with 5 s rest in-between and a discrete discharge/charge stair profile of 0.2C, 0.35 C, 0.5C,
0.75C, 1.25 C for 10 s per level.

Figure 2 shows the voltage and current measured throughout this time of roughly
2.5 days. All tests were carried out using an Arbin BT-2000 battery testing system and
Memmert incubator with Peltier cooling (model IPP600) for maintaining the temperature at
25°C by forced air cooling.

4. Parameter identification
4.1 Framework
The traditional approach to solve the parameter identification problem involves minimizing
the difference between the measured response and predicted response. If the cell voltage
curve obtained through experimental measurement is VE(t), where the time t varies between
the start of the curve at t = 0 and its end at t =T, and the cell voltage curve obtained by
solving the mathematical model for a given parameter set p is V(p ,t), then the correct
parameter setp can be estimated by solving the optimization problem given by:

p est ¼ arg min
p2P

ðT
0

VE tð Þ � V p ; tð Þ� �2
dt: (7)

The minimization algorithm subsequently updates the parameter set p to minimize the
error norm. It should be mentioned that each computation of that error norm requires the
solution of the mathematical model using the given parameter set p . In the case of an
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infeasible parameter setp inf, that will lead to an inadmissible system state (e.g. c‘(tcrash)# 0)
at some time tcrash, the simulation result V(p inf, t) will be set equal to zero for t � tcrash for
practical application of the integration in the range of (0,T ).

An algorithm that can efficiently minimize the error with a fewmodel evaluations is very
appealing. This minimization algorithm must be robust and should be able to avoid local
minima. For this reason, a newly developed hybrid optimizer is used to solve the above
optimization problem.

4.2 Hybrid optimizer
Owing to the large computational time required to solve the mathematical model and
because of the non-linearity of the cost-function space, an efficient and robust
minimization technique is needed. The minimization technique in this work is a single
objective hybrid optimizer (SOHO). The SOHO algorithm features three individual
algorithms. The three algorithms are the single objective variants of the NSGA-III (Deb
and Jain, 2014), NSDE-R (Reddy and Dulikravich, 2019) and MOEA-DD (Li et al., 2015).
It is well known from the no free lunch theorem that no single algorithm is superior over
another for an entire problem set. This means that the superiority of one algorithm over
another for a problem set is paid for by the loss of its superiority over another problem
set. This drives the need to couple several optimization algorithms to increase their
robustness over a larger set of problems.

The SOHO is initialized with one of the three previously stated algorithms. Each
algorithm operates till convergence. If stagnation is detected, an alternative algorithm is
selected randomly from the remaining two. This random selection of algorithm adds a
stochastic nature to search process and avoids user bias. All runs in this work were

Figure 2.
Themeasured
voltage (top) and the
applied current
(bottom) used in
experimental study
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initialized with the NSDE-R algorithm. Figure 3 shows the three algorithms and the
switching scheme. This hybridization allows SOHO to avoid local minima and increases the
convergence rate to the global minimum.

The NSGA-III uses simulated binary crossover (Deb and Agrawal, 1995) and polynomial
mutation (Deb, 2001) to perform the recombination. The parents to be mated are selected
randomly from the entire population set. The NSDE-R uses the “rand/1/bin” (Robi�c and
Filipi�c, 2005) mutation to perform the recombination where the parents to be mated are
randomly selected from population set of unique members. The MOEA-DD also uses the
same recombination operators as the NSGA-III algorithm but selects its parents randomly
from theN best members. More details on these algorithms may be found in Deb (2001).

4.3 Parameter set
The DFN-model used in this work is defined using 44 parameters. Table AI in the Appendix
shows the parameters to be identified for the model. The parameters to be estimated are: the
separator resistance, along with the particle radii, diffusion coefficients, reaction rates and
active mass of both the cathode and the anode, electrode area, separator porosity and the
tortuosity of the cathode, anode and separator. A total of 15 terms (n=15) in the Redlich–
Kister expansion are used to define the OCP curve for each the anode and the cathode. The
first RK coefficient for the anode is always set to zero because of linear dependency to a0, C.
Thus, the total number of RK coefficients is 29 for both the anode and the cathode.

4.4 Problem setup
As previously mentioned, the parameter estimation problem is solved by minimizing the L2-
norm of the difference between the calculated and measured voltage curves. The calculated
curve is obtained by solving the mathematical model while the measured voltage curve is
obtained experimentally. It should be mentioned that the so-called “inverse crime” (Wirgin,
2004) is avoided in this work because the two voltage curves are obtained using different
methods and because of the inherent measurement errors present in the experimentally
obtained voltage curve.

The minimization is performed using the SOHO algorithm. The SOHO algorithm will
search for the parameters, within a user-specific bound, that best minimizes this L2-norm.
The lower and upper bounds for each of the parameters to be estimated in the model is given
in Table AI. It should be mentioned that the bounds on each variable are conservative and
larger than usual. This is to mimic the lack of prior knowledge about the parameters. The
initial values of each parameter were randomly selected using the SOBOL’s algorithm
(Sobol, 1967).

Owing to the large allowable range for most parameters, the optimization algorithm
should first efficiently search a large parameter space but then must focus its search on a
smaller region where there is a greater chance of finding the global minimum.

In this respect, Forman et al. (2012) divided the optimization problem into a global
optimization run followed by local optimization run. Solving two separate optimization

Figure 3.
Algorithms and
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problems greatly increases the computational cost and time. This work makes efficient use
of the recombination operators to solve both optimization problems in a single run. The
crossover (Deb and Agrawal, 1995) and mutation distribution indices (Deb, 2001), h c and
hm, control the proximity of the new candidate solution to its parents. A higher value of
each index leads to a solution that is closer to its parents. The trade-off between global and
local search is controlled by adapting the distribution indices as a function of generations.
Each distribution index linearly increased from a value of 1 to 50 as function of generations.
This leads to a more global search at the beginning which then gradually becomes a local
search. The SOHO algorithm was run for a total of 1,000 generations, although in all cases,
the minimumwas found in less than 500 generations.

The SOHO algorithm is parallelized in a master-slave arrangement. The master node
performs all optimization computation (recombination, selection, etc.) while each slave node
solves the mathematical model. A total of 100 parallel runs (i.e. 100 slave nodes) are used
throughout this work.

It should be mentioned that the solution of the DFN model was terminated if either the
time step became less than 10�6 or if the maximum allowable working time was exceeded.
The maximum allowable time was set as twice the average computing time. This greatly
reduces computing time as infeasible parameter combinations runs are not evaluated. These
termination criteria add additional degree of non-linearity and discontinuity to the cost
function space. It also adds several “flat” regions where the gradient is zero. For this reason,
a gradient based method will find it very difficult to converge to the correct values of the
model parameters. The SOHO algorithm is not affected by any of these function space
modifications.

5. Results
Previous results show that a single particle model is able to accurately model the battery
response. For certain cases, e.g. very high currents, the single particle model may not be able
to accurately represent the Liþ cell dynamics and a more complete model, such as the DFN-
model, may be required.

The DFNmodel was defined using a total of 44 parameters. Figure 4 shows the estimated
voltage andmeasured voltage using the 44 converged parameters.

It can be seen that the results of the DFN model are similar to those measured. The
charging and discharge peaks coincide well for the entire time range.

Figure 5a shows the convergence history for the DFNmodel estimation problem.
Here, the residual is seen to sharply decrease within the first 10,000 evaluations. Figures 5b,

5c and 5d show error distributions at three different locations along the convergence history. It

Figure 4.
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can be seen that even parameter sets in the early regions of the convergence history (Case 1)
have majority of the errors within 1 per cent, with a significant number of them centered close
to zero. In the Case 3, a large fraction of the errors is within 0.25 per cent.

Detailed Results may be found in the Appendix. The error statistic and the convergence
information of the three selected cases of the DFN model are shown in Table AII. Even
though the computing time of the DFN-model is of considerable magnitude, the SOHO
algorithm is able to estimate the parameters shown in Table AIII in the DFN model in less
than one day.This is a significant improvement in convergence time over the previous
studies, which took approximately three weeks to obtain converged results. It should be
mentioned that the computing time for the Newman model used in Forman et al. (2012), i.e.
63 s, is similar to the DFNmodel used in this work (30 s on average).

6. Conclusion
This work efficiently solves the parameter identification problem to match the voltage obtained
using the Doyle–Fuller–Newman model and from experimental measurements. A total of 44
parameters are used to define the DFNmodel. Theminimization of the error between computed
and measured voltage was performed using an efficient single objective hybrid optimizer. The
parameters of the DFN model were identified within one day. After identification, the model
had amean absolute error and root mean squared difference below 10mV.
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Appendix

Table AI.
Parameters and

admissible ranges in
the DFN model

Variable descriptor Symbol Min Max

Electrode area AE 0 2
Cathode tortuosity tC 0 1
Anode tortuosity tA 0 1
Separator tortuosity tS 0 1
Separator porosity « s 0 1
Separator resistance RI 0 1
Anode initial SoC j a,0 0 1
Cathode particle radius rC 1.0E-8 1.0E-5
Anode particle radius rA 1.0E-8 1.0E-5
Cathode diffusion coefficient DC 0 1
Anode diffusion coefficient DA 0 1
Cathode reaction rate kC �20 100
Anode reaction rate kA �20 100
Cathode active mass mC 0 0.051
Anode active mass mA 0 0.033
Cathode kth RK coefficients Ak, C �8 8
Anode kth RK coefficients Ak, A �8 8

Table AII.
Error statistics of the
three selected cases

Case 1 Case 2 Case 3

Evaluations to convergence 8,700 21,100 83,500
Approximate time to convergence (s) 5,455 13,330 52,354
Mean absolute error (mV)) 18.91 15.82 6.47
Relative to measurement (% 0.492 0.326 0.276
Root mean squared difference (mV) 24.49 10.95 7.16
Normalized to measurement mean (%) 0.58 0.399 0.331
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Table AIII.
Converged values of
the parameters in the
Newman model

Variable descriptor Symbol Value

Electrode area AE 1.87
Cathode tortuosity tC 8.29E-3
Anode tortuosity tA 5.86E-1
Separator tortuosity tS 3.20E-1
Separator porosity « s 9.69E-1
Separator resistance RI 4.68E-2
Anode initial SoC j a,0 7.17E-1
Cathode particle radius rC 2.36E-6
Anode particle radius rA 4.30E-6
Cathode diffusion coefficient DC 9.98E-4
Anode diffusion coefficient DA 5.00E-5
Cathode reaction rate kC �2.10
Anode reaction rate kA �9.25
Cathode active mass mC 5.09E-2
Anode active mass mA 3.26E-2
Cathode Redlich–Kister coefficients A1, C 3.77

A2, C �2.9E-1
A3, C 3.50
A4, C 4.35E-1
A5, C 4.24
A6, C 3.64
A7, C 3.41
A8, C �2.46
A9, C 4.59
A10, C 1.33
A11, C 1.43
A12, C 4.59
A13, C �1.9E-2
A14, C 2.54
A15, C �4.94

Anode Redlich–Kister coefficients A1, A �4.85
A2, A 2.76
A3, A �4.24
A4, A 7.35E-1
A5, A 2.29
A6, A �4.30
A7, A �3.89
A8, A �6.45E-1
A9, A 3.66
A10, A 2.50E-1
A11, A 4.22
A12, A �5.86E-1
A13, A �8.20E-1
A14, A 4.98

COMPEL
38,5
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