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Abstract
Purpose – In recent years, with the increase in computing power, artificial intelligence can gradually be
regarded as intelligent agents and interact with humans, this interactive network has become increasingly
complex. Therefore, it is necessary to model and analyze this complex interactive network. This paper aims to
model and demonstrate the evolution of crowd intelligence using visual complex networks.
Design/methodology/approach – This paper uses the complex network to model and observe the
collaborative evolution behavior and self-organizing system of crowd intelligence.
Findings – The authors use the complex network to construct the cooperative behavior and self-organizing
system in crowd intelligence. Determine the evolution mode of the node by constructing the interactive
relationship between nodes and observe the global evolution state through the force layout.
Practical implications – The simulation results show that the state evolution map can effectively
simulate the distribution, interaction and evolution of crowd intelligence through force layout and the
intelligent agents’ linkmode the authors proposed.
Originality/value – Based on the complex network, this paper constructs the interactive behavior and
organization system in crowd intelligence and visualizes the evolution process.

Keywords Crowd intelligence, Intelligence evolution, Complex network, Agent interaction,
Force layout

Paper type Research paper

1. Introduction
Intelligence is an important driving force for human development. With the vigorous
development of artificial intelligence technology, intelligent technology has penetrated into
many fields. The research on intelligence has once again pushed to a new height and no
longer limited to computing science. Including human beings, anything that contains
intelligence can be regarded as an agent with intelligence. These agents influence, interact
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and evolve with each other to form a system of crowd intelligence. Crowd intelligence
mainly explores ways to rationally use various intelligent resources, constructs the
operation of intelligent body systems, taps the potential of intelligent interaction in specific
fields and finally enhances benefits.

The crowd intelligence system contains multiple heterogeneous agents, these agents
interact equivalently through the transformation from the subject space to the number space.
The transformation from the subject space to the number space is called the intelligence
measurement. After the measurement conversion, heterogeneous agents can associate and
interact without obstacles. At this time, there are complex association relationships among
individuals, which eventually form a network structure, known as the crowd intelligence
network. With the passage of time, agents in the crowd intelligence network may have certain
changes in spatial location, intelligence quantity and interaction ability. For example, the
spatial distribution of interconnected agents should be denser, agents in the interaction
process may also affect each other’s intelligence. This kind of crowd intelligence network that
changes over time is called the evolution of crowd intelligence.

Regarding the changes in space, distribution and amount of intelligence that exist in
the evolution of the intelligence network, we propose to use complex network to describe the
evolution of the intelligence network. First, we elaborated on the deployment process of the
visualized complex network, including the visualized distribution, linking methods and
parameter settings of agent nodes. After that, we constructed the interaction mode of
individuals in the state-based network and pointed out the visual details of the evolution
process. Finally, we designed the evolution experiment and the extreme case observation
experiment, respectively. The purpose of this experiment is to verify the effectiveness of our
proposed crowd intelligence network and its evolution. The experimental results show that
the complex network we deployed for crowd intelligence’s evolution can describe the
evolution process of the crowd intelligence network in a visual distribution.

The contributions of this paper are summarized as:
� Complex networks are used to construct interaction models of crowd intelligence.

Nodes and edges represent agents and interaction relationships, respectively.
� We design the way agents interact with each other. Neighboring agents interact to

change their intelligence.
� The evolution of crowd intelligence in extreme cases is explored by analyzing the

agent distribution of different intelligences.

The rest of the paper is organized as follows: Section 2 describes the work related to crowd
intelligence and complex networks. In Section 3, we describe the complex network deployment
and evolution mode of the evolution of crowd intelligence. Section 4 shows the evolution effect
test and extreme evolution test results of the deployed crowd intelligence network. Finally, in
Section 5, we summarize the whole work proposed and the prospect of future work.

2. Related work
2.1 Crowd intelligence
The concept of crowd intelligence was put forward with crowd computing [Miller (2012)] in the
early days, emphasizing the importance of hum1an beings in computing science. The current
research on crowd intelligence focuses on the internalmechanismwithin the group. For example:

� To study how human and computer systems form a group of interoperable
computing to complete complex tasks that are difficult for computer systems to
complete independently [Yu et al. (2017)].
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� How the heterogeneous system composed of man-machine-software can cooperate
to achieve the optimal control mechanism [Shirado and Christakis (2017)].

� Introduce people into the system as experts to participate in processing, feedback
and decision-making, forming a mixed man-machine system, so as to maximize the
role of human knowledge in the application system [Ooi et al. (2014)].

The calculation and measurement of intelligence quantity of intelligent agents usually refer
to the measurement method of human intelligence, the measurement of human intelligence
depends on the determined computing system. The existing methods for humanmeasurement
usually adopt IQ tests, which is similar to methods for machine intelligencemeasurement. The
core idea is the accuracy rate of completing certain kinds of questions in unit time. In recent
years, the population entropy [Zhang et al. (2008)], comparative entropy [Peter (2010)] and
potential field [Neil et al. (2018)] analysis which measure crowd intelligence behavior have
provided good ideas. However, for heterogeneous agents, there is no clear standard for the
transformationmethod from the main space to the digital space.

Similar to the inter-transformation between heterogeneous intelligences, there is no
unified model for the evolutionary pattern of crowd intelligence. Because there are massive
uncertain interactions in the real world, the relationship and degree of interaction may even
change over time. In this paper, we model, regulate and observe the evolutionary network of
crowd intelligence from a macroscopic perspective.

2.2 Complex network
The complex network theory is the result of observation of relatively simple network
topologies in different fields. It is found that these networks are different from the previous
network systems, they are dynamic and open, growing and evolving with the characteristics
of life. At the local level, it is disorganized, while at the whole level, it is highly clustered. In
particular, when the fields involved are different, it is necessary to integrate the knowledge
of various related disciplines to establish the transformation from the subject space to the
digital body space, so as to form a complex network belonging to this field. The research
field of complex network mainly involves: cellular network [Zhang et al. (2016)], social
network [Wang et al. (2019)], epidemic disease transmission network [Zhuang and Yagan
(2020)] and so on.

At present, the research work of complex networks mainly focuses on the following
aspects:

� Research on the model and theory of complex network [Zhou et al. (2009)]. It includes
more extensive empirical research and more in-depth theoretical characterization, such
as matching patterns based on given degree distribution, various correlation [Geng
et al. (2018)], statistical properties and description of weighted network and network
clustering [Lei et al. (2019), Ooi et al. (2014)], etc.

� Evolution and mechanism model of complex network [Bettencourt (2014)]. It mainly
studies the statistical law of actual network evolution [Yang et al. (2018)] and
theoretically can develop a more perfect network mechanism model with specific
geometric properties.

� Structure of complex network [Liu et al. (2014)]. Functional and network dynamics
research, including network fault tolerance and attack robustness [Shang (2017)], as
well as network propagation [Karyotis and Papavassiliou (2015)], synchronization
and resonance dynamics processes.
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In this paper, combined with the characteristics of complex networks, the science of public
intelligence and its evolution model are expressed in the form of complex networks. The
next section describes the details of complex network construction that incorporates the
features of crowd intelligence.

3. Establishment of crowd intelligence distribution and complex network
The two basic elements of a complex network are nodes and edges. In this paper, they are
set as:

(1) Node: in our model, a node is used to represent an intelligent individual. The
attributes of a node include the independent ID i of the intelligent individual and
the intelligence quantity qi of i. The set of all the n nodes is represented as
N ¼ fi1; i2; � � � ; ing. For each node i in N, it contains its position attributes ix and iy
in coordinates.

(2) Edge: an edge represents an association between two agents. The properties of an
edge include only two nodes linked by it. The set of all edges is represented as
E ¼ f i; jð Þji; j 2 N; i 6¼ jg.

The whole crowd intelligence evolution map is represented as:

G ¼ N;Eð Þ: (1)

This section describes the layout process and evolution process of crowds respectively. It is
worth noting that the next calculation involves taking pixels (Pix) as the unit of
measurement.

3.1 Layout process
First, we exclude edges and consider the distribution of nodes only. Assuming that the number of
summation nodes is n, the coordinates x and y of each node are uniformly distributed in the circular
region x2 þ y2# r2. Therefore, the distance between each node is almost equal. Figure 1 (a) shows
the distribution ofn=150 nodes in a circlewith radius r=720Pix.

Next, we group n nodes. The purpose of this is to make the resulting distribution have
multiple populations and thus contain a variety of evolutionary environments. Suppose each
group contains g nodes, these g nodes are assigned new IDs 1 to g and participate in the edge
establishment together. Base on Figure 1 (a), Figure 1 (b) shows the result of node linking.
150 nodes are divided into two groups, including 90 nodes and 60 nodes respectively. For the
nodes ig and jg (make sure that ig > jg to avoid repeated links) in a group with g nodes, they
are linked if and only if:

d
igjg
g2

> rand; (2)

where rand is a random number with standard uniform distribution. Link density d [ (0, 1)
is used to control the probability of association between nodes. Figure 1 (b) shows the case
when d = 0.0625. Under the constraint of ig; jg 2 1; gð Þ, when d = 1, the theoretical
possibility of two nodes linking is 0.25. According to the setting of 90 nodes as a group, the
numbers of the two main populations formed in the graph are bounded by 90. However,
these linked nodes no longer obey the uniform distribution as shown in Figure 1 (a).
The distribution of these nodes follows the Fruchterman–Reingold (FR) [Bi et al. (2018)]
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algorithm. The FR algorithm treats each node as an electron in the nucleus and is affected
by two forces: The coulomb force fc generated by other nodes and the gravitational force fg
generated by linked nodes. These two forces are respectively expressed as:

fc ¼ s2

c

ffiffiffiffiffiffiffiffi
pr2

n

r

fg ¼
�pr2c2

n
s

8>>>>>>><
>>>>>>>:

(3)

where s represents the ideal distance between two points and c stands for constant and is
used to control the optimal distance between two nodes. For each node, its forces need to
gradually reach a balance and finally form a stable distribution. It is worth noting that due

Figure 1.
Different stages of the

formation of the
crowd intelligence

network. It includes
the initial uniform

distribution pattern,
the agent node

linking pattern and
the evolutionary

distribution

Crowd
intelligence
evolution

285



to the intervention of the FR method, the two unrelated crowds present an exclusive
relationship in the distribution.

Then, for the nodes that are not linked in Figure 1 (b), we need to give these nodes a
chance to link. Assuming that node iu with no edges is assigned, the ID of the target
correlation node we assign to iu is:

j ¼ brand* n� iuð Þc; j 2 N: (4)

Figure 1 (c) shows the result after adding edges. It can be seen that it is composed of two
distinct large crowds and several other sporadic small crowds. The formation of two large
crowds is the result of group division in the previous step.

3.2 Evolutionary process
After the whole crowd intelligence map G is established, the evolution process can be started.
When constructing Figure 1 (a), our method randomly allocates intelligent quantities. Every
element inQ follows the standard uniform distribution. The other two factors influencing the
evolution of crowd intelligents are interaction rate a [ (0,0.5) and volatility rate v [ (0,1).
Interaction rate a is used to represent the degree of correlation between nodes, volatility rate v
is used to describe the possibility of uncertainty and degradation that may occur in the
interaction process. In the evolution from generation t to generation tþ 1, when two agents it
and jt interact with each other, their intelligence qti and q

t
j are change as:

qtþ1
i ¼ atqtj rand � vtð Þ

qtþ1
j ¼ atqtþ1

i rand � vtð Þ;

(
(5)

where it and jt belong to the asynchronous interaction pattern, so the intelligent increment of
qtj is related to q

tþ1
i . In each evolutionary generation t, at and vtmay be different. The state of

the evolutionary network at the tth evolutionary stage is described as:

Gt ¼ Nt;E;Qt;at; vtð Þ; (6)

where only the edge set E does not change with evolution. Although the number n of nodes
remains unchanged, there are many types of node positions that satisfy the FR algorithm. So the
position of N at each moment changes, but the magnitude of this change is small. Figure 1 (d)
shows the evolution of Figure 1 (c) at t= 60, a1���60 ¼ 0:1; v1���60 ¼ 0:2. Different colors of nodes
represent different levels of intelligence. In the next subsection, we elaborate on some of the
details of the evolutionmap that may influence our subsequent experimental analysis.

3.3 Details
Figure 2 zooms in on Figures 1 (d) to showmore detail. There are three main types of details:

(1) Color distribution. Over the course of evolution, we’ve noticed an exponential increase
in the intelligence of individuals. To better represent the process of evolution, we
chose 4n as the step size and divided five different levels of intelligence.

(2) No other crowds are allowed in the closed area. For example, in the closed circle
composed by the nodes 69-88-59-62-71-67-33-76-60-87-69 in Figure 2, crowds like
142-136 are not allowed to be distributed in it, even if the FR algorithm allows it to
happen.
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(3) Self-connection. In our linking process, there may be free nodes. This kind of nodes
is not without links, but they are linked to themselves (e.g. node 90 in Figure 2).

4. Experiments and observations
To verify the reliability of our proposed interaction complex network describing the
evolution of crowd intelligence, we designed two different experiments: conventional
evolution experiments and extreme environment evolution observations. The commonalities
in the parameter settings of these two experiments are:

� n: 150. Keep the number of samples per experiment constant.
� g1: 90, g2: 60. n nodes are divided into two groups, which are 90 and 60, respectively.
� d: 0.0625. Link density is maintained at 0.0625.
� The deployment of node locations follows the FR algorithm in the previous section.

Figure 2.
Details in the

visualization of
evolutionary

processes. This figure
shows the colors

corresponding to the
range of agent
intelligence. In

particular, some non-
negligible

distribution details
and interaction
details are also

presented in this
figure
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4.1 Conventional evolutionary experiments
In the experiments, we first demonstrate the effect of changes in interaction rate a on the
evolution of crowd intelligence. We start from 0.08 and set 3 sets of different interaction
rates with 0.02 as the step size. Figure 3 shows the population intelligence distribution map
at t = 60. The line graph corresponding to each distribution map reflects the individual’s
intelligence status after each evolution. Q represents the average intelligence of all agents
andDQ represents the variance of the intelligence of all agents.

Figure 3.
Influence of different
interaction rates on
crowd intelligence
evolution. In our
proposed interaction
method, even small
changes in interaction
rate can still produce
qualitative changes
after 60 evolutions
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It can be seen from the evolution trend of different interaction rates in Figure 3 that the
higher the interaction rate, the faster the evolution. In particular, the complex evolutionary
network with a = 0.12 evolves into smarter individuals significantly earlier than the
network with a = 0.08. In addition, as the intelligence of the agent increases exponentially,
even a small-scale fine-tuning of the interaction rate. After 60 times of evolution, the increase
in intelligence presents a butterfly effect.

On the other hand, we also designed an experiment to test the sensitivity of volatility
rate. Figure 4 shows the evolutionary situations after adjusting for volatility rate at a fixed
interaction rate. Comparing with Figure 3(b) we find that volatility rate will hinder evolution
to a certain extent. The evolutionary uncertainty caused by volatility rate will affect the
progress of evolution. The higher the volatility rate, the greater the obstacle to evolution.

However, there are two evolutionary phenomena worth noting:
(1) Normally, the node at the core of the interaction can first reach a higher level of

intelligence in evolution (e.g. node 131 in Figure 2) and the node at the edge of the
interaction or the end of the network usually evolves slowly.

(2) In the experiment shown in Figure 4, although the volatility rate of node
interaction is adjusted, it still does not significantly interfere with the evolutionary
trend. In the following extreme observations, we will focus on the impact of
extreme volatility rate on evolution.

Figure 4.
Influence of different

volatility rates on
crowd intelligence
evolution. In our

volatility rate
comparison

experiment, although
increasing volatility

rate can stop the
evolution of the

wisdom of the crowd,
it still fails to stop the

trend of normal
evolution
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4.2 Observations of extreme cases
When the volatility rate reaches a high level, it can block the trend of normal evolution. In
the extreme situation experiment we designed, the interaction rate a is set to 0.2 and the
volatility rate v is set as 1 in the first 120 iterations. The left side of Figure 5 shows the

Figure 5.
Evolutionary
distribution of
wisdom under
extreme volatility
rate. The distribution
on the left is the result
of 120 evolutions with
v = 1. Keeping the
same distribution, we
suddenly get
volatility rate down
to 0 and evolve it 60
times to get the
distribution on the
right. For different
intelligence, we
extract their
distributions and
measure the
Kullback–Leibler
divergence of them
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distribution and changes of crowd intelligence in this environment. In the first 50 iterations
of evolution, the change of the agent is in a normal state. After 50 iterations of evolution,
individuals with low intelligence and individuals with high intelligence gradually form a
balance and are evenly distributed in space and almost converges. We extracted the
distribution of low-intelligence individuals and high-intelligence individuals in the figure
and calculated their Kullback–Leibler divergence Re. Kullback–Leibler divergence is used to
measure the distance between two distributions, the more similar the two distributions, the
closer the Kullback–Leibler divergence between them is to 0.

From the 121st round of evolution, we suddenly set the volatility rate to 0 and continue to
evolve. The right side of Figure 5 shows the evolution state of the crowd intelligent after the
volatility rate mutation. After continuing to evolve for 60 rounds, the entire distribution
showed a new balance, the intelligent evolution curve also converged again after a small
change. However, the low-intelligence individuals and high-intelligence individuals present
a new distribution in the complex interactive network diagram and are different from the
distribution at t = 120. At t = 180, These two types of individuals with different intelligence
no longer have the same distribution and their Kullback–Leibler divergence is also
increased compared with the previous state.

5. Conclusion and future work
The constant interaction of crowd intelligence leads to the evolution of agent intelligence,
then, lead to the evolution of crowd intelligence. This paper describes the distribution,
interaction and evolution of crowd intelligence using complex interactive networks. We
describe in detail the organizational processes, interaction methods and parameters
influencing evolution among agents. Specifically, we analyze evolution at a macro level by
analyzing the distribution of agents with different intelligences. In the future, we will
consider the variable interactivity of the network on the basis of the existing complex
interactive network, so that the simulation of the complex network is closer to the real
situation.
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