Search results

1 – 10 of over 3000
Article
Publication date: 1 February 2009

V.K. Gupta, S.B. Singh and S. Ray

A mathematical model has been developed to predict steady state creep response of a rotating disc made of SiC (particle/whisker) reinforced 6061Al matrix composite. The model is…

Abstract

A mathematical model has been developed to predict steady state creep response of a rotating disc made of SiC (particle/whisker) reinforced 6061Al matrix composite. The model is used to investigate the effect of SiC morphology on the creep behavior of composite disc. The steady state creep behavior has been described by Sherby’s creep law. The creep stresses and creep rates are significantly affected by the morphology of SiC. The steady state creep rates in whisker reinforced disc are observed to be significantly lower than those observed in particle reinforced disc.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 1959

A.E. Johnson, J. Henderson and V.D. Mathur

The nature of the relation between complex stress creep under conditions of relaxation and complex stress creep under conditions of steady stress was investigated. The required…

Abstract

The nature of the relation between complex stress creep under conditions of relaxation and complex stress creep under conditions of steady stress was investigated. The required relation has been examined for an RR59 aluminium alloy at 200 deg. C. and for a magnesium (2 per cent aluminium) alloy at 50 deg. C. For RR59 aluminium alloy at 200 deg. C. and for magnesium (2 per cent aluminium) alloy at 50 deg. C., a reasonably close prediction of the course of relaxation complex stress time curves is given by the mechanical age hardening theory of creep on the basis of steady complex stress creep data. Other mechanical theories tend to predict for a specific relaxed stress a relaxation time in excess of that noted in experiment.

Details

Aircraft Engineering and Aerospace Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 January 1952

A.E. Johnson

DURING the last few years a programme of creep tests under general stress systems at high temperatures has been carried out at the N.P.L., using four metallic alloys which were…

Abstract

DURING the last few years a programme of creep tests under general stress systems at high temperatures has been carried out at the N.P.L., using four metallic alloys which were chosen as being representative of basic groups of materials used in practice in machinery operating at high temperatures. This work, it was hoped, would fulfil, at least partly, the great need for experimental data in this field, as opposed to the comparative abundance of theoretical work available, and also enable a critical examination of the merits of this theoretical work to be made. The materials chosen in order of examination were a cast 0–17 per cent carbon steel, an aluminium alloy (R.R. 59), a magnesium alloy (containing 2 per cent aluminium), and a nickel‐chromium alloy (Nimonic 75). Each material was tested at temperatures lying within the normal working range of the material in question. Thus the 0–17 per cent carbon steel was tested at 350, 450 and 550 dcg. C. (662, 842 and 1,022 deg. F.), the aluminium alloy at 150 and 200 deg. C. (302 and 392 dcg. F.), the magnesium alloy at 20 and 50 deg. C. (68 and 122 dcg. F.), and the nickel‐chromium alloy at 550 and 650 dcg. C. (1,022 and 1,202 deg. F.).

Details

Aircraft Engineering and Aerospace Technology, vol. 24 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 21 September 2010

Feng Tai, Fu Guo, Jianping Liu, Zhidong Xia, Yaowu Shi, Yongping Lei and Xiaoyan Li

The purpose of this paper is to investigate the creep properties of Sn‐0.7Cu composite solder joints reinforced with optimal nano‐sized Ag particles in order to improve the creep

Abstract

Purpose

The purpose of this paper is to investigate the creep properties of Sn‐0.7Cu composite solder joints reinforced with optimal nano‐sized Ag particles in order to improve the creep performance of lead‐free solder joints by a composite approach.

Design/methodology/approach

The composite approach has been considered as an effective method to improve the creep performance of solder joints. Nano‐sized Ag reinforcing particles were incorporated into Sn‐0.7Cu solder by mechanically mixing. A systematic creep study was carried out on nano‐composite solder joints reinforced with optimal nano‐sized Ag particles and compared with Sn‐0.7Cu solder joints at different temperatures and stress levels. A steady‐state creep constitutive equation for nano‐composite solder joints containing the best volume reinforcement was established in this study. Microstructural features of solder joints were analyzed to help determine their deformation mechanisms during creep.

Findings

The creep activation energies and stress exponents of Ag particle‐enhanced Sn‐0.7Cu lead‐free based composite solder joints were higher than those of matrix solder joints under the same stress and temperature. Thus, the creep properties of nano‐composite solder joints are better than those of Sn‐0.7Cu solder joints.

Originality/value

The findings indicated that nano‐sized Ag reinforcing particles could effectively improve the creep properties of solder joints. A new steady‐state creep constitutive equation of nano‐composite solder joints was established. Deformation mechanisms of Sn‐0.7Cu solder and nano‐composite solder joints during creep were determined.

Details

Soldering & Surface Mount Technology, vol. 22 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 29 May 2009

V.K. Gupta, Vijay Kumar and S. Ray

The purpose of this paper is to investigate the effect of imposing linear and quadratic composition gradients on the steady state creep behavior of a rotating functionally graded…

Abstract

Purpose

The purpose of this paper is to investigate the effect of imposing linear and quadratic composition gradients on the steady state creep behavior of a rotating functionally graded Al‐SiCP disc operating under a radial thermal gradient.

Design/methodology/approach

Mathematical model to describe steady state creep behavior in rotating discs made of isotropic aluminum composite containing linear and quadratic distributions of Silicon Carbide (SiCP) in the radial direction has been formulated. The discs are assumed to operate under a radial thermal gradient originating due to braking action as estimated by FEM analysis. The steady state creep behavior of the discs under stresses developing due to rotation has been determined following Sherby's law. Based on the developed model, the distributions of stresses and strain rates have been obtained and compared for various functionally graded material (FGM) discs containing the same average amount (20 vol per cent) of dispersoid. The creep response of a composite disc with uniform SiCP content of 20 vol per cent and operating under a radial thermal gradient has also been computed for comparison with the results obtained for FGM discs.

Findings

The study reveals that the distribution of stresses and strain rates in a rotating composite disc operating under a radial thermal gradient are significantly affected by different particle distributions with in the disc. The creep stresses and steady state creep rates in a rotating FGM disc can be significantly reduced by employing more SiCP particles in the middle compared to the inner and the outer radii.

Originality/value

The study provides an understanding of the required tailoring of composition in order to control creep stresses and creep rates in a rotating FGM disc operating under a radial thermal gradient.

Details

Engineering Computations, vol. 26 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1949

THE work described in this paper is part of a programme concerned with the plastic, creep, and relaxation properties of metals under complex stress systems at elevated…

Abstract

THE work described in this paper is part of a programme concerned with the plastic, creep, and relaxation properties of metals under complex stress systems at elevated temperatures.which is being carried out in the Engineering Division of the N.P.L. It comprises data on the criterion of departure from elastic behaviour, of a low carbon steel over the temperature range 20–550 deg. C, and of an aluminium alloy over the temperature range 20–200 deg. C, and the creep properties under complex stress systems of the low carbon steel at 350 deg. C, and of the aluminium alloy at 150 and 200 deg. C.

Details

Aircraft Engineering and Aerospace Technology, vol. 21 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 February 1992

MATTHEW R. KUHN and JAMES K. MITCHELL

The discrete element method (DEM) was used to stimulate creep processes in granular materials. The authors present the main features of the numerical model, which include a new…

Abstract

The discrete element method (DEM) was used to stimulate creep processes in granular materials. The authors present the main features of the numerical model, which include a new viscous mechanism for particle sliding, a new feedback technique for maintaining constant stress during creep, and a scaling technique that allowed monitoring the long‐term creep behaviour of a granular assembly. The creep behaviour of the numerical model exhibited the essential characteristics of soil creep—a creep rate that decreased rapidly with time, an increase in the creep rate with the applied deviator stress, and the beginning of creep rupture. The model's numerical performance is discussed, and representative results are presented.

Details

Engineering Computations, vol. 9 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 September 2023

Xing Ai, Shuaishuai Wang, Fenghua Luo, Haiqing Pei and Zhenwei Li

The purpose of this study is to describe the mechanism of single-crystal high-temperature creep deformation, predict the creep life more accurately and study the creep

Abstract

Purpose

The purpose of this study is to describe the mechanism of single-crystal high-temperature creep deformation, predict the creep life more accurately and study the creep constitutive and lifetime models with microstructure evolution.

Design/methodology/approach

The mechanical properties of nickel-based single-crystal superalloy are closely related to the γ' phase. Creep tests under four different temperature and stress conditions were carried out. The relationship between creep temperature, stress and life is fitted by numerical method, and the creep activation energy is obtained. The creep fracture surface, morphology and evolution of strengthening phase (γ') and matrix phase (γ) during different creep periods were observed by scanning electron microscope. With the increase of creep temperature, the rafting time is advanced. The detailed morphology and evolution of dislocations were observed by transmission electron microscope (TEM).

Findings

With the increase of creep temperature, the rafting time is advanced. The detailed morphology and evolution of dislocations were observed by TEM. Dislocations are mainly concentrated in the γ channel phase, especially at high temperature and low stress.

Originality/value

A creep constitutive model based on the evolution of γ' phase size and γ channel width was proposed. Compared with the experimental results, the predicted creep life is within 1.4 times error dispersion band.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 October 2014

V. Kobelev

The purpose of this paper is to derive the exact analytical expressions for torsion and bending creep of rods with the Norton-Bailey, Garofalo and Naumenko-Altenbach-Gorash…

Abstract

Purpose

The purpose of this paper is to derive the exact analytical expressions for torsion and bending creep of rods with the Norton-Bailey, Garofalo and Naumenko-Altenbach-Gorash constitutive models. These simple constitutive models, for example, the time- and strain-hardening constitutive equations, were based on adaptations for time-varying stress of equally simple models for the secondary creep stage from constant load/stress uniaxial tests where minimum creep rate is constant. The analytical solution is studied for Norton-Bailey and Garofalo laws in uniaxial states of stress.

Design/methodology/approach

The creep component of strain rate is defined by material-specific creep law. In this paper the authors adopt, following the common procedure Betten, an isotropic stress function. The paper derives the expressions for strain rate for uniaxial and shear stress states for the definite representations of stress function. First, in this paper the authors investigate the creep for the total deformation that remains constant in time.

Findings

The exact analytical expressions giving the torque and bending moment as a function of the time were derived.

Research limitations/implications

The material isotropy and homogeneity preimposed. The secondary creep phase is considered.

Practical implications

The results of creep simulation are applied to practically important problem of engineering, namely for simulation of creep and relaxation of helical and disk springs.

Originality/value

The new, closed form solutions with commonly accepted creep models allow a deeper understanding of such a constitutive model's effect on stress and deformation and the implications for high temperature design. The application of the original solutions allows accurate analytic description of creep and relaxation of practically important problems in mechanical engineering. Following the procedure the paper establishes closed form solutions for creep and relaxation in helical, leaf and disk springs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2004

John Lau, Walter Dauksher, Joe Smetana, Rob Horsley, Dongkai Shangguan, Todd Castello, Irv Menis, Dave Love and Bob Sullivan

The lead‐free solder joint reliability of several printed circuit board mounted high‐density packages, when subjected to temperature cycling was investigated by finite element…

Abstract

The lead‐free solder joint reliability of several printed circuit board mounted high‐density packages, when subjected to temperature cycling was investigated by finite element modelling. The packages were a 256‐pin plastic ball grid array (PBGA), a 388‐pin PBGA, and a 1657‐pin ceramic column grid array. Emphasis was placed on the determination of the creep responses (e.g. stress, strain, and strain energy density) of the lead‐free solder joints of these packages.

Details

Soldering & Surface Mount Technology, vol. 16 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 3000