Search results

1 – 10 of 10
Article
Publication date: 9 January 2024

Bhupendra Kumar Sharma, Umesh Khanduri, Rishu Gandhi and Taseer Muhammad

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow…

Abstract

Purpose

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow and aneurysm conditions. The findings of this study offer significant insights into the intricate interplay encompassing electro-osmosis, MHD flow, microorganisms, Joule heating and the ternary hybrid nanofluid.

Design/methodology/approach

The governing equations are first non-dimensionalised, and subsequently, a coordinate transformation is used to regularise the irregular boundaries. The discretisation of the governing equations is accomplished by using the Crank–Nicolson scheme. Furthermore, the tri-diagonal matrix algorithm is applied to solve the resulting matrix arising from the discretisation.

Findings

The investigation reveals that the velocity profile experiences enhancement with an increase in the Debye–Hückel parameter, whereas the magnetic field parameter exhibits the opposite effect, reducing the velocity profile. A comparative study demonstrates the velocity distribution in Au-CuO hybrid nanofluid and Au-CuO-GO ternary hybrid nanofluid. The results indicate a notable enhancement in velocity for the ternary hybrid nanofluid compared to the hybrid nanofluids. Moreover, an increase in the Brinkmann number results in an augmentation in entropy generation.

Originality/value

This study investigates the flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, MHD flow and aneurysm conditions. The governing equations are non-dimensionalised, and a coordinate transformation is applied to regularise the irregular boundaries. The Crank–Nicolson scheme is used to model blood flow in the presence of a ternary hybrid nanofluid (Au-CuO-GO/blood) within the arterial domain. The findings shed light on the complex interactions involving stenosis, MHD flow, aneurysms, Joule heating and the ternary hybrid nanofluid. The results indicate a decrease in the wall shear stress (WSS) profile with increasing stenosis size. The MHD effects are observed to influence the velocity distribution, as the velocity profile exhibits a declining nature with an increase in the Hartmann number. In addition, entropy generation increases with an enhancement in the Brinkmann number. This research contributes to understanding fluid dynamics and heat transfer mechanisms in bifurcated arteries, providing valuable insights for diagnosing and treating cardiovascular diseases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 May 2023

Everton Boos, Fermín S.V. Bazán and Vanda M. Luchesi

This paper aims to reconstruct the spatially varying orthotropic conductivity based on a two-dimensional inverse heat conduction problem described by a partial differential…

23

Abstract

Purpose

This paper aims to reconstruct the spatially varying orthotropic conductivity based on a two-dimensional inverse heat conduction problem described by a partial differential equation (PDE) model with mixed boundary conditions. The proposed discretization uses a highly accurate technique and allows simple implementations. Also, the authors solve the related inverse problem in such a way that smoothness is enforced on the iterations, showing promising results in synthetic examples and real problems with moving heat source.

Design/methodology/approach

The discretization procedure applied to the model for the direct problem uses a pseudospectral collocation strategy in the spatial variables and Crank–Nicolson method for the time-dependent variable. Then, the related inverse problem of recovering the conductivity from temperature measurements is solved by a modified version of Levenberg–Marquardt method (LMM) which uses singular scaling matrices. Problems where data availability is limited are also considered, motivated by a face milling operation problem. Numerical examples are presented to indicate the accuracy and efficiency of the proposed method.

Findings

The paper presents a discretization for the PDEs model aiming on simple implementations and numerical performance. The modified version of LMM introduced using singular scaling matrices shows the capabilities on recovering quantities with precision at a low number of iterations. Numerical results showed good fit between exact and approximate solutions for synthetic noisy data and quite acceptable inverse solutions when experimental data are inverted.

Originality/value

The paper is significant because of the pseudospectral approach, known for its high precision and easy implementation, and usage of singular regularization matrices on LMM iterations, unlike classic implementations of the method, impacting positively on the reconstruction process.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 October 2023

Sapna Pandit, Pooja Verma, Manoj Kumar and Poonam

This article offered two meshfree algorithms, namely the local radial basis functions-finite difference (LRBF-FD) approximation and local radial basis functions-differential…

Abstract

Purpose

This article offered two meshfree algorithms, namely the local radial basis functions-finite difference (LRBF-FD) approximation and local radial basis functions-differential quadrature method (LRBF-DQM) to simulate the multidimensional hyperbolic wave models and work is an extension of Jiwari (2015).

Design/methodology/approach

In the evolvement of the first algorithm, the time derivative is discretized by the forward FD scheme and the Crank-Nicolson scheme is used for the rest of the terms. After that, the LRBF-FD approximation is used for spatial discretization and quasi-linearization process for linearization of the problem. Finally, the obtained linear system is solved by the LU decomposition method. In the development of the second algorithm, semi-discretization in space is done via LRBF-DQM and then an explicit RK4 is used for fully discretization in time.

Findings

For simulation purposes, some 1D and 2D wave models are pondered to instigate the chastity and competence of the developed algorithms.

Originality/value

The developed algorithms are novel for the multidimensional hyperbolic wave models. Also, the stability analysis of the second algorithm is a new work for these types of model.

Article
Publication date: 3 March 2023

David Tae and Kumar K. Tamma

The purpose of this study is to further advance the multiple space/time subdomain framework with model reduction. Existing linear multistep (LMS) methods that are second-order…

Abstract

Purpose

The purpose of this study is to further advance the multiple space/time subdomain framework with model reduction. Existing linear multistep (LMS) methods that are second-order time accurate, and useful for practical applications, have a significant limitation. They do not account for separable controllable numerical dissipation of the primary variables. Furthermore, they have little or no significant choices of altogether different algorithms that can be integrated in a single analysis to mitigate numerical oscillations that may occur. In lieu of such limitations, under the generalized single-step single-solve (GS4) umbrella, several of the deficiencies are circumvented.

Design/methodology/approach

The GS4 framework encompasses a wide variety of LMS schemes that are all second-order time accurate and offers controllable numerical dissipation. Unlike existing state-of-art, the present framework permits implicit–implicit and implicit–explicit coupling of algorithms via differential algebraic equations (DAE). As further advancement, this study embeds proper orthogonal decomposition (POD) to further reduce model sizes. This study also uses an iterative convergence check in acquiring sufficient snapshot data to adequately capture the physics to prescribed accuracy requirements. Simple linear/nonlinear transient numerical examples are presented to provide proof of concept.

Findings

The present DAE-GS4-POD framework has the flexibility of using different spatial methods and different time integration algorithms in altogether different subdomains in conjunction with the POD to advance and improve the computational efficiency.

Originality/value

The novelty of this paper is the addition of reduced order modeling features, how it applies to the previous DAE-GS4 framework and the improvement of the computational efficiency. The proposed framework/tool kit provides all the needed flexibility, robustness and adaptability for engineering computations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 28 February 2023

M.S. Daoussa Haggar and M. Mbehou

This paper focuses on the unconditionally optimal error estimates of a linearized second-order scheme for a nonlocal nonlinear parabolic problem. The first step of the scheme is…

Abstract

Purpose

This paper focuses on the unconditionally optimal error estimates of a linearized second-order scheme for a nonlocal nonlinear parabolic problem. The first step of the scheme is based on Crank–Nicholson method while the second step is the second-order BDF method.

Design/methodology/approach

A rigorous error analysis is done, and optimal L2 error estimates are derived using the error splitting technique. Some numerical simulations are presented to confirm the study’s theoretical analysis.

Findings

Optimal L2 error estimates and energy norm.

Originality/value

The goal of this research article is to present and establish the unconditionally optimal error estimates of a linearized second-order BDF finite element scheme for the reaction-diffusion problem. An optimal error estimate for the proposed methods is derived by using the temporal-spatial error splitting techniques, which split the error between the exact solution and the numerical solution into two parts, that is, the temporal error and the spatial error. Since the spatial error is not dependent on the time step, the boundedness of the numerical solution in L∞-norm follows an inverse inequality immediately without any restriction on the grid mesh.

Details

Arab Journal of Mathematical Sciences, vol. 30 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 14 September 2023

Yazhou Wang, Dehong Luo, Xuelin Zhang, Zhitao Wang, Hui Chen, Xiaobo Zhang, Ningning Xie, Shengwei Mei, Xiaodai Xue, Tong Zhang and Kumar K. Tamma

The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF…

Abstract

Purpose

The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF) algorithms with variable time step size, and the adaptive time-stepping in BDF algorithms is demonstrated for efficient time-dependent simulations in fluid flow and heat transfer.

Design/methodology/approach

The Lagrange interpolation polynomial is used to predict the time derivative, and then the accurate primary result is obtained by the Gauss integral, which is applied to evaluate the local error. Not only the generalized formula of the proposed error estimator is presented but also the specific expression for the widely applied BDF1/2/3 is illustrated. Two essential executable MATLAB functions to implement the proposed error estimator are appended for practical applications. Then, the adaptive time-stepping is demonstrated based on the newly proposed error estimator for BDF algorithms.

Findings

The validation tests show that the newly proposed error estimator is accurate such that the effectivity index is always close to unity for both linear and nonlinear problems, and it avoids under/overestimation of the exact local error. The applications for fluid dynamics and coupled fluid flow and heat transfer problems depict the advantage of adaptive time-stepping based on the proposed error estimator for time-dependent simulations.

Originality/value

In contrast to existing error estimators for BDF algorithms, the present work is more accurate for the local error estimation, and it can be readily extended to practical applications in engineering with a few changes to existing codes, contributing to efficient time-dependent simulations in fluid flow and heat transfer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 January 2023

Antonio Campo, Diego Celentano and Yunesky Masip

The purpose of this paper is to address unsteady heat conduction in two subsets of ordinary bodies. One subset consists of a large plane wall, a long cylinder and a sphere in one…

Abstract

Purpose

The purpose of this paper is to address unsteady heat conduction in two subsets of ordinary bodies. One subset consists of a large plane wall, a long cylinder and a sphere in one dimension. The other subset consists of a short cylinder and a large rectangular bar in two dimensions. The prevalent assumptions in the two subsets are: constant initial temperature, uniform surface heat flux and thermo-physical properties invariant with temperature. The engineering applications of the unsteady heat conduction deal with the determination of temperature–time histories in the two subsets using electric resistance heating, radiative heating and fire pool heating.

Design/methodology/approach

To this end, a novel numerical procedure named the enhanced method of discretization in time (EMDT) transforms the linear one-dimensional unsteady, heat conduction equations with non-homogeneous boundary conditions into equivalent nonlinear “quasi–steady” heat conduction equations having the time variable embedded as a time parameter. The equivalent nonlinear “quasi–steady” heat conduction equations are solved with a finite difference method.

Findings

Based on the numerical computations, it is demonstrated that the approximate temperature–time histories in the simple subset of ordinary bodies (large plane wall, long cylinder and sphere) exhibit a perfect matching over the entire time domain 0 < t < ∞ when compared against the rigorous exact temperature–time histories expressed by classical infinite series. Furthermore, using the method of superposition of solutions in the convoluted subset (short cylinder and large rectangular crossbar), the same level of agreement in the approximate temperature–time histories in the simple subset of ordinary bodies is evident.

Originality/value

The performance of the proposed EMDT coupled with a finite difference method is exhaustively assessed in the solution of the unsteady, one-dimensional heat conduction equations with prescribed surface heat flux for: a subset of one-dimensional bodies (plane wall, long cylinder and spheres) and a subset of two-dimensional bodies (short cylinder and large rectangular bar).

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 4 December 2023

Chandan Kumawat, Bhupendra Kumar Sharma, Taseer Muhammad and Liaqat Ali

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past…

Abstract

Purpose

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past couple of decades, the percentage of deaths associated with blood vessel diseases has risen sharply to nearly one third of all fatalities. For vascular disease to be stopped in its tracks, it is essential to understand the vascular geometry and blood flow within the artery. In recent scenarios, because of higher thermal properties and the ability to move across stenosis and tumor cells, nanoparticles are becoming a more common and effective approach in treating cardiovascular diseases and cancer cells.

Design/methodology/approach

The present mathematical study investigates the blood flow behavior in the overlapped stenosed curved artery with cylinder shape catheter. The induced magnetic field and entropy generation for blood flow in the presence of a heat source, magnetic field and nanoparticle (Fe3O4) have been analyzed numerically. Blood is considered in artery as two-phases: core and plasma region. Power-law fluid has been considered for core region fluid, whereas Newtonian fluid is considered in the plasma region. Strongly implicit Stone’s method has been considered to solve the system of nonlinear partial differential equations (PDE’s) with 10–6 tolerance error.

Findings

The influence of various parameters has been discussed graphically. This study concludes that arterial curvature increases the probability of atherosclerosis deposition, while using an external heating source flow temperature and entropy production. In addition, if the thermal treatment procedure is carried out inside a magnetic field, it will aid in controlling blood flow velocity.

Originality/value

The findings of this computational analysis hold great significance for clinical researchers and biologists, as they offer the ability to anticipate the occurrence of endothelial cell injury and plaque accumulation in curved arteries with specific wall shear stress patterns. Consequently, these insights may contribute to the potential alleviation of the severity of these illnesses. Furthermore, the application of nanoparticles and external heat sources in the discipline of blood circulation has potential in the medically healing of illness conditions such as stenosis, cancer cells and muscular discomfort through the usage of beneficial effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 May 2023

Xiaoyu Liu, Suchuan Dong and Zhi Xie

This paper aims to present an unconditionally energy-stable scheme for approximating the convective heat transfer equation.

Abstract

Purpose

This paper aims to present an unconditionally energy-stable scheme for approximating the convective heat transfer equation.

Design/methodology/approach

The scheme stems from the generalized positive auxiliary variable (gPAV) idea and exploits a special treatment for the convection term. The original convection term is replaced by its linear approximation plus a correction term, which is under the control of an auxiliary variable. The scheme entails the computation of two temperature fields within each time step, and the linear algebraic system resulting from the discretization involves a coefficient matrix that is updated periodically. This auxiliary variable is given by a well-defined explicit formula that guarantees the positivity of its computed value.

Findings

Compared with the semi-implicit scheme and the gPAV-based scheme without the treatment on the convection term, the current scheme can provide an expanded accuracy range and achieve more accurate simulations at large (or fairly large) time step sizes. Extensive numerical experiments have been presented to demonstrate the accuracy and stability performance of the scheme developed herein.

Originality/value

This study shows the unconditional discrete energy stability property of the current scheme, irrespective of the time step sizes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 10