Search results

1 – 10 of over 1000
Article
Publication date: 31 December 2019

Shuji Tomaru and Akiyuki Takahashi

Since the most of structures and structural components suffers from cyclic loadings, the study on the fatigue failure due to the crack growth has a great importance. The purpose…

Abstract

Purpose

Since the most of structures and structural components suffers from cyclic loadings, the study on the fatigue failure due to the crack growth has a great importance. The purpose of this paper is to present a three-dimensional fatigue crack growth simulation of embedded cracks using s-version finite element method (SFEM). Using the numerical results, the validity of the fitness-for-service (FFS) code evaluation method is verified.

Design/methodology/approach

In this paper, three-dimensional fatigue crack propagation analysis of embedded cracks is performed using the SFEM. SFEM is a numerical analysis method in which the shape of the structure is represented by a global mesh, and cracks are modeled by local meshes independently. The independent global and local meshes are superimposed to obtain the displacement solution of the problem simultaneously.

Findings

The fatigue crack growth of arbitrary shape of cracks is slow compared to that of the simplified circular crack and the crack approximated based on the FFS code of the Japan Society of Mechanical Engineers (JSME). The results tell us that the FFS code of JSME can provide a conservative evaluation of the fatigue crack growth and the residual life time.

Originality/value

This paper presents a three-dimensional fatigue crack growth simulation of embedded cracks using SFEM. Using this method, it is possible to apply mixed mode loads to complex shaped cracks that are closer to realistic conditions.

Details

International Journal of Structural Integrity, vol. 11 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 July 2023

Mas Irfan P. Hidayat, Azzah D. Pramata and Prima P. Airlangga

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth

Abstract

Purpose

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth directions under the influence of multiple crack parameters.

Design/methodology/approach

To determine the crack-growth direction in aluminum specimens, multiple crack parameters representing some degree of crack propagation complexity, including crack length, inclination angle, offset and distance, were examined. FE method models were developed for multiple crack growth simulations. To capture the complex relationships among multiple crack-growth variables, GRNN models were developed as nonlinear regression models. Six input variables and one output variable comprising 65 training and 20 test datasets were established.

Findings

The FE model could conveniently simulate the crack-growth directions. However, several multiple crack parameters could affect the simulation accuracy. The GRNN offers a reliable method for modeling the growth of multiple cracks. Using 76% of the total dataset, the NN model attained an R2 value of 0.985.

Research limitations/implications

The models are presented for static multiple crack growth problems. No material anisotropy is observed.

Practical implications

In practical crack-growth analyses, the NN approach provides significant benefits and savings.

Originality/value

The proposed GRNN model is simple to develop and accurate. Its performance was superior to that of other NN models. This model is also suitable for modeling multiple crack growths with arbitrary geometries. The proposed GRNN model demonstrates its prediction capability with a simpler learning process, thus producing efficient multiple crack growth predictions and assessments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 May 2022

Jun Zou, Zhang Yuechao and Zhenyu Feng

The fuselage riveted lap-joints are susceptible to multiple site damage (MSD) and should be considered in damage tolerance analysis. This paper aims to investigate the stress…

Abstract

Purpose

The fuselage riveted lap-joints are susceptible to multiple site damage (MSD) and should be considered in damage tolerance analysis. This paper aims to investigate the stress intensity factor (SIF) and crack growth simulation for lap-joints based on three-dimensional (3D) finite element analysis.

Design/methodology/approach

The 3D finite element model of lap-joints is established by detailed representation of rivets and considering the rivet clamping force and friction. Numerical study is conducted to investigate the SIF distribution along the thickness direction and the effect of clamping force. A predictive method for the cracks propagation of MSD is then developed, in which an integral mean is adopted to quantify the SIF at crack tips, and the crack closure effect is considered. For comparison, a fatigue test of a lap-joint with MSD cracks is conducted to determine the cracks growth live and measure the cracks growth.

Findings

The numerical study shows that the through-thickness crack at riveted hole in lap-joints can be treated as mode I crack. The distribution of SIF along the thickness direction is inconstant and nonmonotonic. Besides, the increase in clamping force will lead to more frictional load transfer at the faying surfaces. The multiple crack growth simulation results agreed well with the experimental data.

Originality/value

The novelty of this work is that the SIF distribution along the thickness direction and the MSD cracks growth simulation for lap-joints are investigated by 3D finite element analysis, which can reflect the secondary bending, rivet clamping, contact and friction in lap-joints.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 August 2015

Jirí Behal, Petr Homola and Roman Ružek

The prediction of fatigue crack growth behaviour is an important part of damage tolerance analyses. Recently, the author’s work has focused on evaluating the FASTRAN retardation…

96

Abstract

Purpose

The prediction of fatigue crack growth behaviour is an important part of damage tolerance analyses. Recently, the author’s work has focused on evaluating the FASTRAN retardation model. This model is implemented in the AFGROW code, which allows different retardation models to be compared. The primary advantage of the model is that all input parameters, including those for an initial plane-strain state and its transition to a plane-stress-state, are objectively measured using standard middle-crack-tension M(T) specimens. The purpose of this paper is to evaluate the ability of the FASTRAN model to predict correct retardation effects due to high loading peaks that occur during variable amplitude loading in sequences representative of an aircraft service.

Design/methodology/approach

This paper addresses pre-setting of the fracture toughness K R (based on J-integral J Q according to ASTM1820) in the FASTRAN retardation model. A set of experiments were performed using specimens made from a 7475-T7351 aluminium alloy plate. Loading sequences with peaks ordered in ascending-descending blocks were used. The effect of truncating and clipping selected load levels on crack propagation behaviour was evaluated using both experimental data and numerical analyses. The findings were supported by the results of a fractographic analysis.

Findings

Fatigue crack propagation data defined using M(T) specimens made from Al 7475-T7351 alloy indicate the difficulty of evaluating the following two events simultaneously: fatigue crack increments after application of loads with maximum amplitudes that exceeded J Q and subcritical crack increments caused by loads at high stress intensity factors. An effect of overloading peaks with a maximum that exceeds J Q should be assessed using a special analysis beyond the scope of the FASTRAN retardation model.

Originality/value

Measurements of fatigue crack growth on specimens made from 7475 T7351 aluminium alloy were carried out. The results indicated that simultaneously evaluating fatigue crack increments after application of the load amplitude above J Q and subcritical increments caused by the loads at high stress intensity factors is difficult. Experiments demonstrated that if the fatigue crack reaches a specific length, the maximal amplitude load induces considerable crack growth retardation.

Details

International Journal of Structural Integrity, vol. 6 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 April 2018

S.A. Krishnan, G. Sasikala, A. Moitra, S.K. Albert and A.K. Bhaduri

The purpose of this paper is to present a methodology to assess material damage parameters for ductile crack initiation and growth ahead of a crack/notch tip in high hardening…

Abstract

Purpose

The purpose of this paper is to present a methodology to assess material damage parameters for ductile crack initiation and growth ahead of a crack/notch tip in high hardening steel like AISI type 316L(N) stainless steel.

Design/methodology/approach

Ductile damage parameter and far field J-integral have been obtained from standard FEM analysis for a crack/notch tip undergoing large plastic deformation and resulting in crack initiation/growth. In conjunction with experimental results, the damage variable for low strength and high hardening material has been derived in terms of continuum parameters: equivalent plastic strain (εeq) and stress triaxiality (φ). The material parameters for damage initiation and growth in 316LN SS have been evaluated from tensile and fracture tests. With these material tensile/fracture parameters as input, elastic-plastic eXtended Finite Element Method (X-FEM) simulations were carried out on compact tension (CT) specimen geometry under varying initial stress triaxiality conditions.

Findings

The material parameters for damage initiation and growth have been assessed and calibrated by comparing the X-FEM predicted load-displacement responses with the experimental results. It is observed that the deviations in the predicted load values from the experimental data are within 6 percent for specimens with a/W=0.39, 0.55, 0.64, while for a/W=0.72, it is 17 percent.

Originality/value

The present study is a part of developing methods to obtain calibrated material damage parameters for crack growth simulation of components made of AISI 316L(N) stainless steel. This steel is used for fast breeder reactor-based power plant being built at Kalpakkam, India.

Details

International Journal of Structural Integrity, vol. 9 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 August 2012

Gulshan Singh, Juan Ocampo, Harry Millwater and Allan Clauer

The purpose of this paper is to develop an approach to optimize the cycles‐to‐failure of a peened component with respect to laser peening (LP) variables: pressure magnitude…

Abstract

Purpose

The purpose of this paper is to develop an approach to optimize the cycles‐to‐failure of a peened component with respect to laser peening (LP) variables: pressure magnitude, mid‐span, and spot size when the component is subject to a variable amplitude loading.

Design/methodology/approach

To optimally design an LP process, an experimentally validated 3D finite element simulation of the LP process, a cycles‐to‐failure estimation capability incorporating residual stress, and a particle swarm optimization strategy were developed and employed to maximize the cycles‐to‐failure of a component of a titanium turbine disk.

Findings

The most critical finding of this research is that a minor difference in the residual stress profile can lead to a large difference in the cycles‐to‐failure. This finding implies that selecting the optimization objective to be the cycles‐to‐failure is a better option as compared to the residual stress profile.

Research limitations/implications

The LP‐induced residual stresses are assumed static and do not change as number of load cycles increase.

Originality/value

The paper develops a framework that relates the LP variables and the cycles‐to‐failure of a peened component. A modified particle swarm optimization approach is developed to optimize the fatigue life of a turbine disk.

Article
Publication date: 12 August 2014

A. Pirondi, G. Giuliese and F. Moroni

In this work, the cohesive zone model (CZM) developed by some of the authors to simulate the propagation of fatigue defects in two dimensions is extended in order to simulate the…

Abstract

Purpose

In this work, the cohesive zone model (CZM) developed by some of the authors to simulate the propagation of fatigue defects in two dimensions is extended in order to simulate the propagation of defects in 3D. The paper aims to discuss this issue.

Design/methodology/approach

The procedure has been implemented in the finite element (FE) solver (Abaqus) by programming the appropriate software-embedded subroutines. Part of the procedure is devoted to the calculation of the rate of energy release per unit, G, necessary to know the growth of the defect.

Findings

The model was tested on different joint geometries, with different load conditions (pure mode I, mode II pure, mixed mode I/II) and the results of the analysis were compared with analytical solutions or virtual crack closure technique (VCCT).

Originality/value

The possibility to simulate the growth of a crack without any re-meshing requirements and the relatively easy possibility to manipulate the constitutive law of the cohesive elements makes the CZM attractive also for the fatigue crack growth simulation. However, differently from VCCT, three-dimensional fatigue de-bonding/delamination with CZM is not yet state-of-art in FE softwares.

Details

International Journal of Structural Integrity, vol. 5 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 February 2012

Juha Kuutti and Kari Kolari

The purpose of this paper is to present a new simplified local remeshing procedure for the study of discrete crack propagation in finite element (FE) mesh. The proposed technique…

Abstract

Purpose

The purpose of this paper is to present a new simplified local remeshing procedure for the study of discrete crack propagation in finite element (FE) mesh. The proposed technique accounts for the generation and propagation of crack‐like failure within an FE‐model. Beside crack propagation, the technique enables the analysis of fragmentation of initially intact continuum. The capability of modelling fragmentation is essential in various structure‐structure interaction analyses such as projectile impact analysis and ice‐structure interaction analysis.

Design/methodology/approach

The procedure combines continuum damage mechanics (CDM), fictitious crack approach and a new local remeshing procedure. In the approach a fictitious crack is replaced by a discrete crack by applying delete‐and‐fill local remeshing. The proposed method is independent of mesh topology unlike the traditional discrete crack approach. The procedure is implemented for 3‐D solid elements in commercial finite element software Abaqus/Explicit using Python scripting. The procedure is completely automated, such that crack initiation and propagation analyses do not require user intervention. A relatively simple constitutive model was implemented strictly for demonstrative purposes.

Findings

Well known examples were simulated to verify the applicability of the method. The simulations revealed the capabilities of the method and reasonable correspondence with reference results was obtained. Material fragmentation was successfully simulated in ice‐structure interaction analysis.

Originality/value

The procedure for modelling discrete crack propagation and fragmentation of initially intact quasi‐brittle materials based on local remeshing has not been presented previously. The procedure is well suited for simulation of fragmentation and is implemented in a commercial FE‐software.

Article
Publication date: 20 April 2015

Xiaodong Zhang and Tinh Quoc Bui

– The purpose of this paper is to achieve numerical simulation of cohesive crack growth in concrete structures.

Abstract

Purpose

The purpose of this paper is to achieve numerical simulation of cohesive crack growth in concrete structures.

Design/methodology/approach

The extended finite element method (XFEM) using four-node quadrilateral element associated with the fictitious cohesive crack model is used. A mixed-mode traction-separation law is assumed for the cohesive crack in the fracture process zone (FPZ). Enrichments are considered for both partly and fully cracked elements, and it thus makes the evolution of crack to any location inside the element possible. In all. two new solution procedures based on Newton-Raphson method, which differ from the approach suggested by Zi and Belytschko (2003), are presented to solve the nonlinear system of equations. The present formulation results in a symmetric tangent matrix, conveniently in finite element implementation and programming.

Findings

The inconvenience in solving the inversion of an unsymmetrical Jacobian matrix encountered in the existing approach is avoided. Numerical results evidently confirm the accuracy of the proposed approach. It is concluded that the developed XFEM approach is especially suitable in simulating cohesive crack growth in concrete structures.

Research limitations/implications

Multiple cracks and crack growth in reinforced concretes should be considered in further studies.

Practical implications

The research paper presents a very useful and accurate numerical method for engineering application problems that has ability to numerically simulate the cohesive crack growth of concrete structures.

Originality/value

The research paper provides a new numerical approach using two new solution procedures in solving nonlinear system of equations for cohesive crack growth in concrete structures that is very convenient in programming and implementation.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 March 2020

Muhamad Husnain Mohd Noh, Mohd Akramin Mohd Romlay, Chuan Zun Liang, Mohd Shamil Shaari and Akiyuki Takahashi

Failure of the materials occurs once the stress intensity factor (SIF) overtakes the material fracture toughness. At this level, the crack will grow rapidly resulting in unstable…

Abstract

Purpose

Failure of the materials occurs once the stress intensity factor (SIF) overtakes the material fracture toughness. At this level, the crack will grow rapidly resulting in unstable crack growth until a complete fracture happens. The SIF calculation of the materials can be conducted by experimental, theoretical and numerical techniques. Prediction of SIF is crucial to ensure safety life from the material failure. The aim of the simulation study is to evaluate the accuracy of SIF prediction using finite element analysis.

Design/methodology/approach

The bootstrap resampling method is employed in S-version finite element model (S-FEM) to generate the random variables in this simulation analysis. The SIF analysis studies are promoted by bootstrap S-version Finite Element Model (BootstrapS-FEM). Virtual crack closure-integral method (VCCM) is an important concept to compute the energy release rate and SIF. The semielliptical crack shape is applied with different crack shape aspect ratio in this simulation analysis. The BootstrapS-FEM produces the prediction of SIFs for tension model.

Findings

The mean of BootstrapS-FEM is calculated from 100 samples by the resampling method. The bounds are computed based on the lower and upper bounds of the hundred samples of BootstrapS-FEM. The prediction of SIFs is validated with Newman–Raju solution and deterministic S-FEM within 95 percent confidence bounds. All possible values of SIF estimation by BootstrapS-FEM are plotted in a graph. The mean of the BootstrapS-FEM is referred to as point estimation. The Newman–Raju solution and deterministic S-FEM values are within the 95 percent confidence bounds. Thus, the BootstrapS-FEM is considered valid for the prediction with less than 6 percent of percentage error.

Originality/value

The bootstrap resampling method is employed in S-FEM to generate the random variables in this simulation analysis.

Details

International Journal of Structural Integrity, vol. 11 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 1000