Search results

1 – 10 of 189
Article
Publication date: 2 May 2017

Boštjan Mavrič and Božidar Šarler

In this study, the authors aim to upgrade their previous developments of the local radial basis function collocation method (LRBFCM) for heat transfer, fluid flow, electromagnetic…

Abstract

Purpose

In this study, the authors aim to upgrade their previous developments of the local radial basis function collocation method (LRBFCM) for heat transfer, fluid flow, electromagnetic problems and linear thermoelasticity to dynamic-coupled thermoelasticity problems.

Design/methodology/approach

The authors solve a thermoelastic benchmark by considering a linear thermoelastic plate under thermal and pressure shock. Spatial discretization is performed by a local collocation with multi-quadrics augmented by monomials. The implicit Euler formula is used to perform the time stepping. The system of equations obtained from the formula is solved using a Newton–Raphson algorithm with GMRES to iteratively obtain the solution. The LRBFCM solution is compared with the reference finite-element method (FEM) solution and, in one case, with a solution obtained using the meshless local Petrov–Galerkin method.

Findings

The performance of the LRBFCM is found to be comparable to the FEM, with some differences near the tip of the shock front. The LRBFCM appears to converge to the mesh-converged solution more smoothly than the FEM. Also, the LRBFCM seems to perform better than the MLPG in the studied case.

Research limitations/implications

The performance of the LRBFCM near the tip of the shock front appears to be suboptimal because it does not capture the shock front as well as the FEM. With the exception of a solution obtained using the meshless local Petrov–Galerkin method, there is no other high-quality reference solution for the considered problem in the literature yet. In most cases, therefore, the authors are able to compare only two mesh-converged solutions obtained by the authors using two different discretization methods. The shock-capturing capabilities of the method should be studied in more detail.

Originality/value

For the first time, the LRBFCM has been applied to problems of coupled thermoelasticity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 January 2009

C. Kassiotis, J.‐B. Colliat, A. Ibrahimbegovic and H.G. Matthies

The purpose of this paper is to study the partitioned solution procedure for thermomechanical coupling, where each sub‐problem is solved by a separate time integration scheme.

Abstract

Purpose

The purpose of this paper is to study the partitioned solution procedure for thermomechanical coupling, where each sub‐problem is solved by a separate time integration scheme.

Design/methodology/approach

In particular, the solution which guarantees that the coupling condition will preserve the stability of computations for the coupled problem is studied. The consideration is further generalized for the case where each sub‐problem will possess its particular time scale which requires different time step to be selected for each sub‐problem.

Findings

Several numerical simulations are presented to illustrate very satisfying performance of the proposed solution procedure and confirm the theoretical speed‐up of computations which follow from the adequate choice of the time step for each sub‐problem.

Originality/value

The paper confirms that one can make the most appropriate selection of the time step and carry out the separate computations for each sub‐problem, and then enforce the coupling which will preserve the stability of computations with such an operator split procedure.

Details

Engineering Computations, vol. 26 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 November 2016

Rajneesh Kumar and Shaloo Devi

The purpose of this paper is to deal with the study of plane waves and fundamental solution in a modified couple stress generalized thermoelastic solid with three-phase-lag (TPL…

Abstract

Purpose

The purpose of this paper is to deal with the study of plane waves and fundamental solution in a modified couple stress generalized thermoelastic solid with three-phase-lag (TPL) model of thermoelasticity.

Design/methodology/approach

It is found that for two-dimensional model, there exists two longitudinal waves, namely, longitudinal wave (P-wave), thermal wave (T-wave), and a set of coupled transverse waves (SV1 and SV2 waves). In addition, the fundamental solution for the system of differential equations for steady oscillations in terms of elementary functions has been constructed. Some properties of fundamental solution are also established. Various particular cases of interest are also deduced from the present investigations and compared with the known results.

Findings

The phase velocity, attenuation coefficient, specific loss and penetration depth are computed numerically and presented graphically to see the effect of TPL model, dual-phase-lag (DPL) model and GN-III model in the presence of couple stress parameter.

Originality/value

The results are compared with couple stress TPL model, couple stress DPL model and GN-III model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 January 2023

Devender Sheoran, Komal Yadav, Baljit Singh Punia and Kapil Kumar Kalkal

The purpose of this paper is to analyse the transient effects in a functionally graded photo-thermoelastic (TE) medium with gravity and rotation by considering two generalised TE…

Abstract

Purpose

The purpose of this paper is to analyse the transient effects in a functionally graded photo-thermoelastic (TE) medium with gravity and rotation by considering two generalised TE theories: Lord–Shulman (LS) and Green–Lindsay (GL). The governing equations are derived in rectangular Cartesian coordinates for a two dimensional problem.

Design/methodology/approach

All the physical properties of the semiconductor are supposed to vary exponentially with distance. The analytical solution is procured by employing normal mode technique on the resulting non-dimensional coupled field equations with appropriate boundary conditions.

Findings

For the mechanically loaded thermally insulated surface, normal displacement, stress components, temperature distribution and carrier density are calculated numerically with the help of MATLAB software for a silicon semiconductor and displayed graphically. Some particular cases of interest have also been deduced from the present results.

Originality/value

The effects of rotation and non-homogeneity on the different physical fields are investigated on the basis of analytical and numerical results. Comparisons are made with the results predicted by GL theory in the presence and absence of gravity for different values of time. Comparisons are also made between the three theories in the presence of rotation, gravity and in-homogeneity. Such problems are very important in many dynamical systems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 November 2015

Rajneesh Kumar and Vandana Gupta

– The purpose of this paper is to study the propagation of Rayleigh waves in thermoelastic medium with mass diffusion.

Abstract

Purpose

The purpose of this paper is to study the propagation of Rayleigh waves in thermoelastic medium with mass diffusion.

Design/methodology/approach

The field equations for the linear theory of homogeneous isotropic thermoelastic diffusion medium are taken into consideration by using dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models. Using the potential functions and harmonic wave solution, three coupled dilatational waves and a shear wave is obtained. After developing mathematical formulation, the dispersion equation is obtained, which results to be complex and irrational. This equation is converted into a polynomial form of higher degree.

Findings

From the polynomial equation, Rayleigh wave root is found. The secular equation is resolved into a polynomial form to find the roots and therefore to find the existence and propagation of Rayleigh wave. The existence of Rayleigh wave in the assumed model depends on the values of various parameters involved in the secular equation. These roots are resolved for phase velocity and attenuation of the inhomogeneous propagation of Rayleigh wave. Behavior of particle motion of these waves inside and at the surface of the thermoelastic medium with mass diffusion is studied. Particular cases of the interest are also deduced from the present investigation.

Originality/value

Governing equations corresponding to DPLT and DPLD models of thermoelastic diffusion are formulated to study the wave propagation and their dependence on various material parameters. In this paper effects of thermal and diffusion phase lags on the phase velocity, attenuation and on particle paths are observed and depicted graphically.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 May 2021

Shishir Gupta, Rishi Dwivedi, Smita and Rachaita Dutta

The purpose of study to this article is to analyze the Rayleigh wave propagation in an isotropic dry sandy thermoelastic half-space. Various wave characteristics, i.e wave…

Abstract

Purpose

The purpose of study to this article is to analyze the Rayleigh wave propagation in an isotropic dry sandy thermoelastic half-space. Various wave characteristics, i.e wave velocity, penetration depth and temperature have been derived and represented graphically. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form.

Design/methodology/approach

The present article deals with the propagation of Rayleigh surface wave in a homogeneous, dry sandy thermoelastic half-space. The dispersion equation for the proposed model is derived in closed form and computed analytically. The velocity of Rayleigh surface wave is discussed through graphs. Phase velocity and penetration depth of generated quasi P, quasi SH wave, and thermal mode wave is computed mathematically and analyzed graphically. To illustrate the analytical developments, some particular cases are deliberated, which agrees with the classical equation of Rayleigh waves.

Findings

The dispersion equation of Rayleigh waves in the presence of thermal conductivity for a dry sandy thermoelastic medium has been derived. The dry sandiness parameter plays an effective role in thermoelastic media, especially with respect to the reference temperature for η = 0.6,0.8,1. The significant difference in η changes a lot in thermal parameters that are obvious from graphs. The penetration depth and phase velocity for generated quasi-wave is deduced due to the propagation of Rayleigh wave. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form.

Originality/value

Rayleigh surface wave propagation in dry sandy thermoelastic medium has not been attempted so far. In the present investigation, the propagation of Rayleigh waves in dry sandy thermoelastic half-space has been considered. This study will find its applications in the design of surface acoustic wave devices, earthquake engineering structural mechanics and damages in the characterization of materials.

Details

Engineering Computations, vol. 38 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 August 2017

Rajneesh Kumar, Aseem Miglani and Rekha Rani

The purpose of this paper is to study the axisymmetric problem in a micropolar porous thermoelastic circular plate with dual phase lag model by employing eigenvalue approach…

Abstract

Purpose

The purpose of this paper is to study the axisymmetric problem in a micropolar porous thermoelastic circular plate with dual phase lag model by employing eigenvalue approach subjected to thermomechanical sources.

Design/methodology/approach

The Laplace and Hankel transforms are employed to obtain the expressions for displacements, microrotation, volume fraction field, temperature distribution and stresses in the transformed domain. A numerical inversion technique has been carried out to obtain the resulting quantities in the physical domain. Effect of porosity and phase lag on the resulting quantities has been presented graphically. The results obtained for Lord Shulman theory (L-S, 1967) and coupled theory of thermoelasticity are presented as the particular cases.

Findings

The variation of temperature distribution is similar for micropolar thermoelastic with dual (MTD) phase lag model and coupled theory of thermoelasticity. The variation is also similar for tangential couple stress for MTD and L-S theory but opposite to couple theory. The behavior of volume fraction field and tangential couple stress for L-S theory and coupled theory are observed opposite. The values of all the resulting quantities are close to each other away from the sources. The variation in tangential stress, tangential couple stress and temperature distribution is more uniform.

Originality/value

The results are original and new because the authors presented an eigenvalue approach for two dimensional problem of micropolar porous thermoelastic circular plate with dual phase lag model. A comparison of porosity, L-S theory and coupled theory of micropolar thermoelasticity is made. Such problem has applications in material science, industries and earthquake problems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 October 2018

Gaurav Mittal and Vinayak Kulkarni

The purpose of this paper is to frame a dual-phase-lag model using the fractional theory of thermoelasticity with relaxation time. The generalized Fourier law of heat conduction…

Abstract

Purpose

The purpose of this paper is to frame a dual-phase-lag model using the fractional theory of thermoelasticity with relaxation time. The generalized Fourier law of heat conduction based upon Tzou model that includes temperature gradient, the thermal displacement and two different translations of heat flux vector and temperature gradient has been used to formulate the heat conduction model. The microstructural interactions and corresponding thermal changes have been studied due to the involvement of relaxation time and delay time translations. This results in achieving the finite speed of thermal wave. Classical coupled and generalized thermoelasticity theories are recovered by considering the various special cases for different order of fractional derivatives and two different translations under consideration.

Design/methodology/approach

The work presented in this manuscript proposes a dual-phase-lag mathematical model of a thick circular plate in a finite cylindrical domain subjected to axis-symmetric heat flux. The model has been designed in the context of fractional thermoelasticity by considering two successive terms in Taylor’s series expansion of fractional Fourier law of heat conduction in the two different translations of heat flux vector and temperature gradient. The analytical results have been obtained in Laplace transform domain by transforming the original problem into eigenvalue problem using Hankel and Laplace transforms. The numerical inversions of Laplace transforms have been achieved using the Gaver−Stehfast algorithm, and convergence criterion has been discussed. For illustrative purpose, the dual-phase-lag model proposed in this manuscript has been applied to a periodically varying heat source. The numerical results have been depicted graphically and compared with classical, fractional and generalized thermoelasticity for various fractional orders under consideration.

Findings

The microstructural interactions and corresponding thermal changes have been studied due to the involvement of relaxation time and delay time translations. This results in achieving the finite speed of thermal wave. Classical coupled and generalized thermoelasticity theories are recovered by considering the various special cases for different order of fractional derivatives and two different translations under consideration. This model has been applied to study the thermal effects in a thick circular plate subjected to a periodically varying heat source.

Practical implications

A dual-phase-lag model can effectively be incorporated to study the transient heat conduction problems for an exponentially decaying pulse boundary heat flux and/or for a short-pulse boundary heat flux in long solid tubes and cylinders. This model is also applicable to study the various effects of the thermal lag ratio and the shift time. These dual-phase-lag models are also practically applicable in the problems of modeling of nanoscale heat transport problems of semiconductor devices and accordingly semiconductors can be classified as per their ability of heat conduction.

Originality/value

To the authors’ knowledge, no one has discussed fractional thermoelastic dual-phase-lag problem associated with relaxation time in a finite cylindrical domain for a thick circular plate subjected to an axis-symmetric heat source. This is the latest and novel contribution to the field of thermal mechanics.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 2005

Mohamed I. A. Othman

A two‐dimensional coupled problem in electromagneto‐thermoelasticity for a thermally and electrically conducting half‐space solid whose surface is subjected to a thermal shock is…

Abstract

A two‐dimensional coupled problem in electromagneto‐thermoelasticity for a thermally and electrically conducting half‐space solid whose surface is subjected to a thermal shock is considered. The problem is in the context of the Lord and Shulman’s generalized thermoelasticity with one relaxation time. There acts an initial magnetic field parallel to the plane boundary of the half‐space. The medium deformed because of thermal shock and due to the application of the magnetic field, there result an induced magnetic and an induced electric field in the medium. The Maxwell’s equations are formulated and the electromagneto‐thermoelastic coupled governing equations are established. The normal mode analysis is used to obtain the exact expressions for the considered variables. The distributions of the considered variables are represented graphically. From the distributions, it can be found the wave type heat propagation in the medium. This indicates that the generalized heat conduction mechanism is completely different from the classic Fourier’s in essence. In generalized thermoelasticity theory heat propagates as a wave with finite velocity instead of infinite velocity in medium. Comparisons are made with the results predicted by the coupled theory for two values of time.

Details

Multidiscipline Modeling in Materials and Structures, vol. 1 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 2009

Mohamed I.A. Othman and Kh. Lotfy

under the effect of temperature dependent properties is established. The modulus of elasticity is taken as a linear function on reference temperature. The formulation is applied…

Abstract

under the effect of temperature dependent properties is established. The modulus of elasticity is taken as a linear function on reference temperature. The formulation is applied under three theories of the generalized thermoelasticity: Lord‐Shulman and Green‐Naghdi (of type II) without energy dissipation, as well as the coupled theory. The normal mode analysis is used to obtain the expressions for the temperature, displacement components and the thermal stresses distributions. Numerical results are illustrated graphically for each problem considered. A Comparison is made with the results predicted by the three theories in the presence and absence of magnetic field and with the case where the modulus of elasticity is independent of temperature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 189