Search results

1 – 10 of 812
Article
Publication date: 30 December 2019

Shitendu Some and Sisir Kumar Guha

In the application of hydrostatic double-layered porous journal bearings, misalignment of bearing systems is a major problem. On the other hand, the use of coupled-stress fluid as…

Abstract

Purpose

In the application of hydrostatic double-layered porous journal bearings, misalignment of bearing systems is a major problem. On the other hand, the use of coupled-stress fluid as a lubricant is more practical in the present days. Furthermore, in case of porous bearing, neglecting slip effect and percolation effect of additives into the pores may lead to erroneous result. Hence, this paper aims to address the effect of journal misalignment and coupled-stress lubricant on the steady-state film pressure of the double-layered porous journal bearing with tangential velocity slip and percolation effect.

Design/methodology/approach

First, considering the tangential velocity slip, the most general modified Reynolds type equation has been derived for the film region and the governing equations for flow in the coarse and fine layers of porous medium, incorporating the percolation effect for a double-layered porous bearing. Here, considering the misalignment caused by shaft displacement. Film thickness expression established considering the effect of misalignment. Steady-state film pressures are obtained by solving modified Reynolds equation based on the coupled-stress lubrication theory. Effects of journal misalignment and coupled-stress lubricant on the pressure profiles in the film region are discussed and demonstrated in the graphical form.

Findings

In this paper, effects of journal misalignment and coupled-stress lubricant on the pressure profiles in the film region are obtained. In general, higher degree of misalignment gives higher steady-state pressure value in the film region, and this pressure increases due to increase in coupled-stress parameter up to a certain limit.

Originality/value

To the best of the author’s knowledge, there is no literature available, so far, that addresses the analysis of the steady-state pressure in the film region of a doubled–layered porous journal bearing under misaligned condition with coupled-stress lubricant. But in this paper all these points are included, which makes this article valuable in design purpose.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 September 2015

M. Daliri and D. Jalali-Vahid

The purpose of this paper is to investigate squeezing and rotating motions between two rough parallel circular discs lubricated by piezo – viscous couple stress lubricant with…

Abstract

Purpose

The purpose of this paper is to investigate squeezing and rotating motions between two rough parallel circular discs lubricated by piezo – viscous couple stress lubricant with pressure-dependent viscosity variation.

Design/methodology/approach

Based upon the Stokes couple stress theory, Barus viscosity-pressure dependency relation and Christensen rough surfaces model, squeeze film characteristics between two rough parallel circular discs are obtained.

Findings

According to the results, it is found that, the combined effects of couple stresses and viscosity-pressure dependency increases squeeze film performance with respect to the classical Newtonian iso-viscous (constant viscosity) lubricant. However, increasing the rotational inertia parameter reduces squeeze film characteristics. On the other hand, depending on the structure of surface roughness, the squeeze film characteristics can be increased or decreased. Furthermore, results show that the surface roughness with circular pattern increases squeeze film characteristics, while the surface roughness with radial pattern will decrease it.

Originality/value

This paper is relatively original and describes the squeeze film characteristics between two parallel circular discs with viscosity-pressure dependency, rotational inertia, couple stresses and surface roughness effects.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2024

Vishal Singh and Arvind K. Rajput

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal…

Abstract

Purpose

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal bearing (MHJB) system.

Design/methodology/approach

To simulate the behaviour of PVP lubricant in clearance space of the MHJB system, the modified form of Reynolds equation is numerically solved by using finite element method. Galerkin’s method is used to obtain the weak form of the governing equation. The system equation is solved by Gauss–Seidal iterative method to compute the unknown values of nodal oil film pressure. Subsequently, performance characteristics of bearing system are computed.

Findings

The simulated results reveal that the location of pressurised lubricant inlets significantly affects the oil film pressure distribution and may cause a significant effect on the characteristics of bearing system. Further, the use of PVP lubricant may significantly enhances the performance of the bearing system, namely.

Originality/value

The present work examines the influence of pocket orientation with respect to loading direction on the characteristics of PVP fluid lubricated MHJB system and provides vital information regarding the design of journal bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0241/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Nioosha Ghasemi Dolatsara, Maghsood Daliri and Moharram Shameli

The purpose of this paper is to investigate squeezing and rotating motions between two parallel annular discs lubricated by ferro-fluid couple stress lubricant in the presence of…

Abstract

Purpose

The purpose of this paper is to investigate squeezing and rotating motions between two parallel annular discs lubricated by ferro-fluid couple stress lubricant in the presence of a uniform magnetic field.

Design/methodology/approach

Based upon the Stokes couple stress theory and ferro-hydrodynamic model of Shliomis, squeeze film characteristics between two parallel annular discs are obtained.

Findings

According to the results, it is found that the combined effects of couple stress and ferro-fluid lubricant increase squeeze film performance with respect to the classical Newtonian lubricant. However, an increase in the rotational inertia parameter reduces squeeze film characteristics.

Originality/value

This paper is relatively original and describes the squeeze film characteristics between two parallel annular discs with rotational inertia, couple stress and ferro-fluid lubricant effects.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 August 2018

Maghsood Daliri

The purpose of this paper is to investigate squeezing and rotating motions between two rough parallel circular discs lubricated by ferro-fluid couple stress lubricant.

Abstract

Purpose

The purpose of this paper is to investigate squeezing and rotating motions between two rough parallel circular discs lubricated by ferro-fluid couple stress lubricant.

Design/methodology/approach

Based upon the Stokes couple stress theory, ferro-hydrodynamic model of Shliomis and Christensen rough surfaces model, squeeze-film characteristics between two rough parallel circular discs considering rotational inertia effects are obtained.

Findings

According to the results, it is found that the combined effects of couple stresses and ferro-fluid lubricants increases squeeze film performance with respect to the classical Newtonian lubricant. However, increasing the rotational inertia parameter reduces squeeze film characteristics. On the other hand, depending on the structure of surface roughness, the squeeze film characteristics can be increased or decreased. Furthermore, results show that the surface roughness with circular pattern increases squeeze film characteristics, while the surface roughness with radial pattern will decrease it.

Originality/value

This paper is relatively original and describes the squeeze film characteristics between two parallel circular discs with ferro- fluid, rotational inertia, couple stresses and surface roughness effects.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 July 2019

Boualem Chetti and Wael Ahmed Crosby

The purpose of this paper is to present the effect of the preload on the static characteristics of three-lobe bearings lubricated with a fluid blended with high polymer additives…

97

Abstract

Purpose

The purpose of this paper is to present the effect of the preload on the static characteristics of three-lobe bearings lubricated with a fluid blended with high polymer additives modeled as a couple stress fluid.

Design/methodology/approach

Based on the micro-continuum theory, the modified Reynolds equation for couple stress fluids is solved using a finite difference method to obtain the distribution of the pressure, the load-carrying capacity, the attitude angle, the friction coefficient and the side leakage for various values of the couple stress parameter and the preload factor.

Findings

The results show that the presence of a couple stress in the lubricants improves the static characteristics of this type of bearing compared to those lubricated with Newtonian fluids for any value of the preload factor. Thus, it is found that the preload significantly affects the performance of the three-lobe journal bearing lubricated with a couple stress fluid or a Newtonian fluid. Moreover, the investigation showed that increasing the preload factor exhibits an increase in the load carrying capacity and the attitude angle, but it decreases the friction coefficient and the side leakage especially at a lower preload factor. Furthermore, using a couple stress fluid and a higher preload factor led to a significant rise in the load carrying capacity and a significant reduction in the friction coefficient.

Practical implications

This study helped improve the performance characteristics of the three-lobe journal bearing.

Originality/value

The presence of couple stress in the lubricants improves the static characteristics of this type of bearing compared to those lubricated with Newtonian fluids for any value of the preload factor. The usage of the couple stress fluid and the higher preload factor led to a significant rise in the load carrying capacity and a significant reduction in the friction coefficient.

Details

Industrial Lubrication and Tribology, vol. 71 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 August 2018

V.S. Madalli, Siddharama Patil, Ayyappa Hiremath and Ramesh Kudenatti

This paper aims to present a detailed analysis to explore the various properties of non-Newtonian couple stress lubricants between parallel porous plates.

Abstract

Purpose

This paper aims to present a detailed analysis to explore the various properties of non-Newtonian couple stress lubricants between parallel porous plates.

Design/methodology/approach

With reference to the theories based on micro-continuum analysis, a non-linear, non-Newtonian Reynolds type equation is arrived. The closed form solutions obtained clearly indicate the changes in pressure, load bearing capacity and response time because of variation in viscosity of couple stress fluid.

Findings

It is observed that the viscosity variation factor greatly influences the change in pressure, load carrying capacity and squeezing time.

Originality/value

It is observed that the nature of lubricants with suitable additives greatly helps in overcoming the adverse effect because of porous surface. Reynolds type equation is analysed using appropriate boundary conditions. The expression for pressure distribution arrived at in turn leads to the analysis of load bearing capacity and response time.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 2022

Said Sobhi, Mohamed El Khlifi and Mohamed Nabhani

The purpose of this study is to present a theoretical investigation of the effects of cavitation and couple stress on the squeeze film behavior between an anisotropic poroelastic…

Abstract

Purpose

The purpose of this study is to present a theoretical investigation of the effects of cavitation and couple stress on the squeeze film behavior between an anisotropic poroelastic rigid disc and a sinusoidally oscillating rigid disc.

Design/methodology/approach

Based on the microcontinuum theory of Vijay Kumar Stokes and the Elrod–Adam algorithm, the non-Newtonian Reynolds equation coupled with modified Darcy's law for lubricant flow through the porous disc is derived. This numerical study includes the continuity of tangential velocity at the porous–fluid interface and the effects of percolation of the polar additives into the anisotropic porous disc.

Findings

The effects of couple stress, oscillating amplitude, percolation additives, permeability and anisotropic permeability on the squeeze film characteristics are discussed. It is found that both the percolation effect of the lubricant additives and the anisotropic structure of the porous surface reduce the flow in the porous disc, resulting in a decrease in pressure. It is also observed that cavitation effects are more pronounced for Newtonian fluids than couple stress fluids.

Originality/value

The results of this study can be used to design a variety of engineering applications such as bearings, wet clutches and non-contact mechanical seals.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 October 2007

R. Raghavendra Rao and K. Raja Sekhar

This paper aims to study the effects of couple stresses and surface roughness on the minimum film thickness of heavily loaded rollers and to discuss these by following Grubin's…

Abstract

Purpose

This paper aims to study the effects of couple stresses and surface roughness on the minimum film thickness of heavily loaded rollers and to discuss these by following Grubin's approach and Crook's approximations.

Design/methodology/approach

A generalised form of Reynolds equation for rough surfaces with lubricant as couple stress fluid is derived. This equation is then used to study the combined effect of couple stresses and surface roughness on the roller bearings under heavily loaded conditions. EHD minimum film thickness expressions is obtained by following Grubin's approach and Crook's approximation and it is studied numerically.

Findings

It is found that, as the chain length of the additive molecules increases, the elastohydrodynamic minimum film thickness increases. Also, as the mean height of roughness asperities increases, the elastohydrodynamic minimum film thickness increases for the transversal roughness and it decreases in the case of longitudinal roughness.

Research limitations/implications

These effects are studied theoretically by the mathematical equations in heavily loaded roller bearings.

Practical implications

Reduction of the film thickness in the EHD lubrication between the rollers can be compensated by the use of lubricants containing additives of molecules of size. As a result the bearing performance can be improved.

Originality/value

This research paper provides a closed form of the expressions for the bearings in EHD lubrication and is studied with regard to couple stress parameter. This paper helps to manufacture better bearings.

Details

Industrial Lubrication and Tribology, vol. 59 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2005

Won‐Hsion Liao, Rong‐Fang Lu, Rean‐Der Chien and Jaw‐Ren Lin

The purpose of the present study is to provide the dynamic characteristics of long journal bearings lubricated with couple stress fluids.

Abstract

Purpose

The purpose of the present study is to provide the dynamic characteristics of long journal bearings lubricated with couple stress fluids.

Design/methodology/approach

Based upon the micro‐continuum theory generated by Stokes, the dynamic Reynolds‐type equation governing the film pressure is derived to account for the couple stress effects resulting from the non‐Newtonian behavior of complex fluids. By applying the linear stability theory to the non‐linear equations of motion the journal rotor, the equilibrium positions and dynamic characteristics of the system are evaluated.

Findings

As compared to the classical Newtonian model, the effects of couple stresses signify enhanced stiffness and damping coefficients (including KXX, KXY , BXX and BXY) at moderate values of the steady eccentricity ratio. Totally, as the rotor center operates at an eccentricity ratio about εs≤0.71, long bearings lubricated with couple stress fluids under small disturbance results in a higher stability threshold speed than that of the Newtonian‐lubricant case.

Originality/value

These findings provide engineers useful information in designing journal‐bearing systems.

Details

Industrial Lubrication and Tribology, vol. 57 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 812