Search results

1 – 10 of over 1000
Article
Publication date: 25 February 2014

Yen-Ching Chang, Chun-Ming Chang, Liang-Hwa Chen and Tung-Jung Chan

Assessing image quality is a difficult task. Different demands need distinct criteria, so it is not realistic to decide which contrast enhancement method is better only through…

Abstract

Purpose

Assessing image quality is a difficult task. Different demands need distinct criteria, so it is not realistic to decide which contrast enhancement method is better only through one criterion. The main purpose is to propose an efficient scheme to effectively evaluate image quality. Furthermore, the idea can be applied in other fields.

Design/methodology/approach

To objectively and quantitatively assess image quality, the authors integrate four criteria into one composite criterion and use it to evaluate seven existing contrast enhancement methods. The mechanism of integration is through a newly proposed way of computing a grey relational grade (GRGd), called the consistent grey relational grade (CGRGd).

Findings

In this paper, the authors propose the CGRGd, which is more efficient and consistent than other existing GRGds. When applied to image quality evaluation, the proposed CGRGd can effectively choose the best method than others. The results also indicate that the proposed CGRGd combined with appropriate criteria can be widely used in the field of multiple criteria.

Originality/value

The proposed CGRGd is a new approach to the problem of multi-criteria evaluation, and its application to the evaluation of image quality is a novel idea. For readers interested in the field of multi-criteria decision-making, the CGRGd provides an efficient and effective alternative.

Open Access
Article
Publication date: 14 August 2017

Mohammad Sadegh Pakkar

This paper aims to apply an integrated data envelopment analysis (DEA) and analytic hierarchy process (AHP) approach to a multi-hierarchy grey relational analysis (GRA) model…

1834

Abstract

Purpose

This paper aims to apply an integrated data envelopment analysis (DEA) and analytic hierarchy process (AHP) approach to a multi-hierarchy grey relational analysis (GRA) model. Consistent with the most real-life applications, the authors focus on a two-level hierarchy in which the attributes of similar characteristics can be grouped into categories. Nevertheless, the proposed approach can be easily extended to a three-level hierarchy in which attributes might also belong to different sub-categories and further be linked to categories.

Design/methodology/approach

The procedure of incorporating the DEA and AHP methods in a two-level GRA may be broken down into a series of steps. The first three steps are under the heading of attributes and the latter three steps are under the heading of categories as follows: computing the grey relational coefficients of attributes for each alternative using the basic GRA model which further provides the required (output) data for an additive DEA model; computing the priority weights of attributes and categories using the AHP method which provides a priori information on the adjustments of attributes and categories in additive DEA models; computing the grey relational grades of attributes in each category for alternatives using an additive DEA model; converting the grey relational grades of attributes to the grey relational coefficients of categories; computing the grey relational grades of categories for alternatives using an additive DEA model; computing the dissimilarity grades of categories for the tied alternatives using an additive DEA exclusion model.

Findings

The proposed approach provides a more reasonable and encompassing measure of performance in a hierarchy GRA, based on which the overall ranking position of alternatives is obtained. A case study of a wastewater treatment technology selection verifies the effectiveness of this approach.

Originality/value

This research is a step forward to overcome the current shortcomings in a hierarchy GRA by extracting the benefits from both the objective and subjective weighting methods.

Details

PSU Research Review, vol. 1 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Article
Publication date: 14 July 2023

Guozhi Xu, Xican Li and Hong Che

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based…

Abstract

Purpose

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based on the positive and inverse grey relational degrees.

Design/methodology/approach

Based on 82 soil sample data collected in Daiyue District, Tai'an City, Shandong Province, firstly, the spectral data of soil samples are transformed by the first order differential and logarithmic reciprocal first order differential and so on, the correlation coefficients between the transformed spectral data and soil organic matter content are calculated, and the estimation factors are selected according to the principle of maximum correlation. Secondly, the positive and inverse grey relational degree model is used to identify the samples to be identified, and the initial estimated values of the organic matter content are obtained. Finally, based on the difference information between the samples to be identified and their corresponding known patterns, a modified model for the initial estimation of soil organic matter content is established, and the estimation accuracy of the model is evaluated using the mean relative error and the determination coefficient.

Findings

The results show that the methods of logarithmic reciprocal first order differential and the first-order differential of the square root for transforming the original spectral data are more effective, which could significantly improve the correlation between soil organic matter content and spectral data. The modified model for hyperspectral estimation of soil organic matter has high estimation accuracy, the average relative error (MRE) of 11 test samples is 4.091%, and the determination coefficient (R2) is 0.936. The estimation precision is higher than that of linear regression model, BP neural network and support vector machine model. The application examples show that the modified model for hyperspectral estimation of soil organic matter content based on positive and inverse grey relational degree proposed in this article is feasible and effective.

Social implications

The model in this paper has clear mathematical and physics meaning, simple calculation and easy programming. The model not only fully excavates and utilizes the internal information of known pattern samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation of soil organic matter. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on.

Originality/value

The paper succeeds in realizing both a modified model for hyperspectral estimation of soil organic matter based on the positive and inverse grey relational degrees and effectively dealing with the randomness and grey uncertainty in spectral estimation.

Details

Grey Systems: Theory and Application, vol. 13 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 24 December 2021

Li Li and Xican Li

In order to make grey relational analysis applicable to the interval grey number, this paper discusses the model of grey relational degree of the interval grey number and uses it…

Abstract

Purpose

In order to make grey relational analysis applicable to the interval grey number, this paper discusses the model of grey relational degree of the interval grey number and uses it to analyze the related factors of China's technological innovation ability.

Design/methodology/approach

First, this paper gives the definitions of the lower bound domain, the value domain, the upper bound domain of interval grey number and the generalized measure and the generalized greyness of interval grey number. Then, based on the grey relational theory, this paper proposes the model of greyness relational degree of the interval grey number and analyzes its relationship with the classical grey relational degree. Finally, the model of greyness relational degree is applied to analyze the related factors of China's technological innovation ability.

Findings

The results show that the model of greyness relational degree has strict theoretical basis, convenient calculation and easy programming and can be applied to the grey number sequence, real number sequence and grey number and real number coexisting sequence. The relational order of the four related factors of China's technological innovation ability is research and development (R&D) expenditure, R&D personnel, university student number and public library number, and it is in line with the reality.

Practical implications

The results show that the sequence values of greyness relational degree have large discreteness, and it is feasible and effective to analyze the related factors of China's technological innovation ability.

Originality/value

The paper succeeds in realizing both the model of greyness relational degree of interval grey number with unvalued information distribution and the order of related factors of China's technological innovation ability.

Details

Grey Systems: Theory and Application, vol. 12 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Open Access
Article
Publication date: 14 August 2018

Xuemei Li, Ya Zhang and Kedong Yin

The traditional grey relational models directly describe the behavioural characteristics of the systems based on the sample point connections. Few grey relational models can…

1052

Abstract

Purpose

The traditional grey relational models directly describe the behavioural characteristics of the systems based on the sample point connections. Few grey relational models can measure the dynamic periodic fluctuation rules of the objects, and most of these models do not have affinities, which results in instabilities of the relational results because of sequence translation. The paper aims to discuss these issues.

Design/methodology/approach

Fourier transform functions are used to fit the system behaviour curves, redefine the area difference between the curves and construct a grey relational model based on discrete Fourier transform (DFTGRA).

Findings

To verify its validity, feasibility and superiority, DFTGRA is applied to research on the correlation between macroeconomic growth and marine economic growth in China coastal areas. It is proved that DFTGRA has the superior properties of affinity, symmetry, uniqueness, etc., and wide applicability.

Originality/value

DFTGRA can not only be applied to equidistant and equal time sequences but also be adopted for non-equidistant and unequal time sequences. DFTGRA can measure both the global relational degree and the dynamic correlation of the variable cyclical fluctuation between sequences.

Details

Marine Economics and Management, vol. 1 no. 1
Type: Research Article
ISSN: 2516-158X

Keywords

Article
Publication date: 28 February 2019

Kedong Yin, Jie Xu and Xuemei Li

The purpose of this paper is to study the essential characteristics of grey relational degree of proximity, to analyse the abstract meaning of grey relational degree of similarity…

Abstract

Purpose

The purpose of this paper is to study the essential characteristics of grey relational degree of proximity, to analyse the abstract meaning of grey relational degree of similarity and fully consider the two different relational degree models.

Design/methodology/approach

The paper constructed the grey proximity relational degree by using the weighted mean distance. To analyse the motivation of the development of things, this paper constructed the grey similarity degree by using the concept of induced strength. Finally, the two correlation models are weighted by reliability weighting.

Findings

The research finding shows that the distance is the essence of the grey relational degree of proximity, and the induced strength is a good explanation of the similarities in the development of things.

Practical implications

The analyses imply that the total amount of water consumption in China has the greatest correlation with the consumption of agricultural water resources, followed by the consumption of industrial water resources, and the least correlation with the consumption of domestic water resources.

Originality/value

The paper succeeds in realizing the essential characteristics of grey relational degree of proximity and the abstract meaning of grey relational degree of similarity. Besides, the resolution of the correlation degree can be greatly improved by reliability weighting.

Details

Grey Systems: Theory and Application, vol. 9 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 10 September 2024

Aqin Hu and Naiming Xie

The purpose of this paper is to explore a new grey relational analysis model to measure the coupling relationship between the indicators for the water environment status…

Abstract

Purpose

The purpose of this paper is to explore a new grey relational analysis model to measure the coupling relationship between the indicators for the water environment status assessment. Meanwhile, the model deals with the problem that the changing of indicator order may result in the changing of the degree of grey relation.

Design/methodology/approach

The binary index submatrix of the sample matrix is given first. Then the product of the matrix and its own transpose is used to measure the characteristics of the index and the coupling relationship between the indicators. Thirdly, the grey relational coefficient is defined based on the matrix norm, and a grey coupling relational analysis model is proposed.

Findings

The paper provides a novel grey relational analysis model based on the norm of matrix. The properties, normalization, symmetry, relational order invariance to the multiplicative, are studied. The paper also shows that the model performs very well on the water environment status assessment in the eight cities along the Yangtze River.

Originality/value

The model in this paper has supplemented and improved the grey relational analysis theory for panel data.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 25 February 2021

Baohua Yang, Junming Jiang and Jinshuai Zhao

The purpose of this study is to construct a gray relational model based on information diffusion to avoid rank reversal when the available decision information is insufficient, or…

Abstract

Purpose

The purpose of this study is to construct a gray relational model based on information diffusion to avoid rank reversal when the available decision information is insufficient, or the decision objects vary.

Design/methodology/approach

Considering that the sample dependence of the ideal sequence selection in gray relational decision-making is based on case sampling, which causes the phenomenon of rank reversal, this study designs an ideal point diffusion method based on the development trend and distribution skewness of the sample information. In this method, a gray relational model for sample classification is constructed using a virtual-ideal sequence. Subsequently, an optimization model is established to obtain the criteria weights and classification radius values that minimize the deviation between the comprehensive relational degree of the classification object and the critical value.

Findings

The rank-reversal problem in gray relational models could drive decision-makers away from using this method. The results of this study demonstrate that the proposed gray relational model based on information diffusion and virtual-ideal sequencing can effectively avoid rank reversal. The method is applied to classify 31 brownfield redevelopment projects based on available interval gray information. The case analysis verifies the rationality and feasibility of the model.

Originality/value

This study proposes a robust method for ideal point choice when the decision information is limited or dynamic. This method can reduce the influence of ideal sequence changes in gray relational models on decision-making results considerably better than other approaches.

Details

Grey Systems: Theory and Application, vol. 12 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 24 July 2020

Kedong Yin, Tongtong Xu, Xuemei Li and Yun Cao

This paper aims to deal with the grey relational problem of panel data with an attribute value of interval numbers. The grey relational model of interval number for panel data is…

Abstract

Purpose

This paper aims to deal with the grey relational problem of panel data with an attribute value of interval numbers. The grey relational model of interval number for panel data is constructed in this paper.

Design/methodology/approach

First, three kinds of interval grey relational operators for the behavior sequence of a dimensionless system are proposed. At the same time, the positive treatment method of interval numbers for cost-type and moderate-type indicators is put forward. On this basis, the correlation between the three-dimensional interval numbers of panel data is converted into the correlation between the two-dimensional interval numbers in time series and cross-sectional dimensions. The grey correlation coefficients of each scheme and the ideal scheme matrix are calculated in the two dimensions, respectively. Finally, the correlation degree of panel interval number and scheme ordering are obtained by arithmetic mean.

Findings

This paper proves that the grey relational model of the panel interval number still has the properties of normalization, uniqueness and proximity. It also avoids the problem that the results are not unique due to the different orders of objects in the panel data.

Practical implications

The effectiveness and practicability of the model is verified by taking supplier selection as an example. In fact, this model can also be widely used in agriculture, industry, society and other fields.

Originality/value

The accuracy of the relational results is higher and more accurate compared with the previous studies.

Details

Grey Systems: Theory and Application, vol. 11 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 26 December 2023

Li Zhang and Xican Li

Aim to the limitations of grey relational analysis of interval grey number, based on the generalized greyness of interval grey number, this paper tries to construct a grey angle…

Abstract

Purpose

Aim to the limitations of grey relational analysis of interval grey number, based on the generalized greyness of interval grey number, this paper tries to construct a grey angle cosine relational degree model from the perspective of proximity and similarity.

Design/methodology/approach

Firstly, the algorithms of the generalized greyness of interval grey number and interval grey number vector are given, and its properties are analyzed. Then, based on the grey relational theory, the grey angle cosine relational model is proposed based on the generalized greyness of interval grey number, and the relationship between the classical cosine similarity model and the grey angle cosine relational model is analyzed. Finally, the validity of the model in this paper is illustrated by the calculation examples and an application example of related factor analysis of maize yield.

Findings

The results show that the grey angle cosine relational degree model has strict theoretical basis, convenient calculation and is easy to program, which can not only fully utilize the information of interval grey numbers but also overcome the shortcomings of greyness relational degree model. The grey angle cosine relational degree is an extended form of cosine similarity degree of real numbers. The calculation examples and the related factor analysis of maize yield show that the model proposed in this paper is feasible and valid.

Practical implications

The research results not only further enrich the grey system theory and method but also provide a basis for the grey relational analysis of the sequences in which the interval grey numbers coexist with the real numbers.

Originality/value

The paper succeeds in realizing the algorithms of the generalized greyness of interval grey number and interval grey number vector, and the grey angle cosine relational degree, which provide a new method for grey relational analysis.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 10 of over 1000