Search results

1 – 10 of 125
Article
Publication date: 12 February 2024

Siquan Zhang

In eddy current nondestructive testing, ferrite-cored probes are usually used to detect and locate defects such as cracks and corrosion in conductive materials. However, the…

Abstract

Purpose

In eddy current nondestructive testing, ferrite-cored probes are usually used to detect and locate defects such as cracks and corrosion in conductive materials. However, the generic analytical model for evaluating corrosion in layered conductor using ferrite-cored probe has not yet been developed. The purpose of this paper is to propose and verify the analytical model of an E-cored probe for evaluating corrosion in layered conductive materials.

Design/methodology/approach

A cylindrical coordinate system is adopted and the solution domain is truncated in the radial direction. The magnetic vector potential of each region excited by a filamentary coil is derived first, and then the expansion coefficients of the solution are obtained by matching the boundary and interface conditions between the regions and the subregions. Finally the closed-form expression of the impedance of the multi-turn coil is derived by using the truncated region eigenfunction expansion (TREE) method, and the impedance calculation is carried out in Mathematica. In the frequency range of 100 Hz to 10 kHz, the impedance changes of the E-cored coil and air-cored coil due to the layered conductor containing corrosion are calculated, respectively, and the influences of corrosion on the coil impedance change are investigated.

Findings

An analytical model for the detection and evaluating of corrosion in layered conductive materials using E-cored probe is proposed. The model can quickly and accurately calculate the impedance change of E-cored coil due to corrosion in layered conductor. The correctness of the analytical model is verified by finite element method and experiments.

Originality/value

An accurate theoretical model of E-cored probe for evaluating corrosion of multilayer conductor is presented. The analytical model can be used to detect the inhomogeneity of layered conductor, design ferrite-cored probe or directly evaluate the corrosion defects of layered conductors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 February 2024

Ali Hashemi, Hamed Taheri and Mohammad Dehghani

To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit…

Abstract

Purpose

To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit. This paper aims to investigate the effect of switching on the thermal behavior of impregnated and nonimpregnated windings. Also, the safe operating time for each winding is determined.

Design/methodology/approach

The power loss of the winding is expressed as a function of the winding specifications. Using homogenization techniques, the equivalent thermal properties for the homogenized winding are calculated and used in a proposed thermal equivalent circuit for winding modeling and analysis. The validity and accuracy of the proposed model are determined by comparing its analysis results and simulation and measurement results.

Findings

The results show that copper windings have better thermal behavior and lower temperature compared to aluminum windings. On the other hand, by impregnating or increasing the packing factor of the winding, the thermal behavior is improved. Also, by choosing the right duty cycle for the winding current source, it is possible to prevent the burning or damage of the winding and increase its lifespan. Comparing the measurement results with the analysis results shows that the proposed equivalent circuit has an error of less than 4% in the calculation of the winding center temperature.

Research limitations/implications

In this paper, the effect of temperature on the electrical resistance of the coil is ignored. Also, rectangular wires were not investigated. Research in these topics are considered as future work.

Originality/value

By calculating the thermal time constant of the winding, its safe operation time can be calculated so that its temperature does not exceed the tolerable value (150 °C). The proposed method analyzes both impregnated and nonimpregnated windings with various schemes. It investigates the effects of switching on their thermal behavior. Additionally, it determines the safe operating time for each type of winding.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 12 December 2023

Cristina A. Huertas-Abril and Francisco Javier Palacios-Hidalgo

Considering the potential of Collaborative International Online Learning (COIL) for cross-boundaries interacting and collaborating effectively, this study aims to explore the…

Abstract

Purpose

Considering the potential of Collaborative International Online Learning (COIL) for cross-boundaries interacting and collaborating effectively, this study aims to explore the intercultural awareness of pre-service language teachers after participating in a COIL project.

Design/methodology/approach

Following a quantitative research approach and an exploratory cross-sectional method, the authors administered a 13-item questionnaire to unveil the perceptions of 64 future language teachers from Spain after their online experience with counterparts from the USA.

Findings

Participants consider that COIL may have enhanced their intercultural and global awareness and equipped them with valuable skills and knowledge for the future, being women more positive than men. Moreover, the results also suggest that those participants who have not traveled abroad consider COIL to be a good opportunity to compensate for the lack of knowledge or experience with other cultures resulting from not having had the opportunity to visit other countries.

Practical implications

COIL needs to be seen as a powerful tool to promote global learning, intercultural understanding and the development of skills among students that will be vital for success in today’s interconnected world. Nevertheless, universities and teacher training centers need to rethink the preparation of future teachers for the increasing demands to prepare students for the requirements of the global world, and to do so, they need to consider that COIL may offer them significant benefits.

Originality/value

This work offers an interesting exploration of teachers’ attitudes toward COIL, providing insights into the potential of online collaboration for developing intercultural awareness.

Details

Journal for Multicultural Education, vol. 18 no. 1/2
Type: Research Article
ISSN: 2053-535X

Keywords

Article
Publication date: 8 June 2022

Han Liu, Guojin Yang and Rong Wang

The wireless power transmission (WPT) system with an embedded coil will achieve a more flexible charging operation and higher system efficiency. However, the comprehensive…

Abstract

Purpose

The wireless power transmission (WPT) system with an embedded coil will achieve a more flexible charging operation and higher system efficiency. However, the comprehensive analysis considering cross-coupling for WPT with embedded coil is rarely investigated. This study aims to improve the system efficiency of WPT with the embedded coil based on circuit analysis and optimization of embedded coil loops.

Design/methodology/approach

The circuit model of WPT system with the non-resonant compensated embedded coil is developed by taking the cross-coupling of all coils and the circuit compensation degree of the embedded coil into consideration. On the basis of system characteristics analysis, optimization of embedded coil position and non-resonant compensation are proposed to improve the efficiency of WPT system with embedded coil. Experimental studies demonstrate the correctness of theoretical research.

Findings

The WPT system with embedded coil designed by optimizing the position and non-resonant compensation achieves higher efficiency than those of the system with two-coil mode and the three-coil system with a resonant compensated embedded coil.

Practical implications

A WPT system with embedded coil could be more efficient by using a non-resonant compensated coil embedded into the buffer material of the storage box for sophisticated electrical equipment.

Originality/value

The cross-coupling between all coils is considered in circuit analysis for WPT system with embedded coil. Optimization of the position and non-resonant compensation of embedded coil achieves higher efficiency.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 8 July 2022

Mehtab Khan, Adnan Daud Khan, Muhammad Jawad, Zahoor Ahmad, Naveed Ur Rehman and Muhammad Israr

This paper aims to investigates a novel design of a modular moving magnet linear oscillating actuator (MMM-LOA) with the capability of coupling modules, based on their application…

Abstract

Purpose

This paper aims to investigates a novel design of a modular moving magnet linear oscillating actuator (MMM-LOA) with the capability of coupling modules, based on their application and space requirements.

Design/methodology/approach

Proposed design comprised of modules, and modules are separated by using nonmagnetic materials. Movable part of the proposed design of LOA is composed of permanent magnets (PMs) having axial magnetization direction and tubular structure. Stator of the proposed design is composed of one coil individually in a module. Dimensions of the design parameters are optimized through parametric analysis using COMSOL Multi Physics software. This design is analyzed up to three modules and their response in term of electromagnetic (EM) force and stroke are presented. Influence of adding modules is analyzed for both directions of direct current (DC) and alternating input loadings.

Findings

Proposed LOA shows linear increase in magnitude of EM force by adding modules. Motor constant of the investigated LOA is 264 N/A and EM force per PM mass is 452.389 N/kg, that shows significant improvement. Moreover, proposed LOA operates in feasible region of stroke for compressor application. Furthermore, this design uses axially magnetized PMs which are low cost and available in compact tubular structure.

Originality/value

Proposed LOA shows the influence of adding modules and its effect in term of EM force is analyzed for DC and alternating current (AC). Moreover, overall performance and structural topology is compared with state-of-the-art designs of LOA. Improvement with regard of motor constant and EM force per PM mass shows originality and scope of this paper.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 22 April 2024

Sami Barmada, Nunzia Fontana, Leonardo Sandrolini and Mattia Simonazzi

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to…

49

Abstract

Purpose

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to an ad-hoc design for specific applications.

Design/methodology/approach

The methodology used is both theoretical and numerical; it is based on circuit theory and on an optimization procedure.

Findings

The results show that when the knowledge of the current in each unit cell of a metasurface is needed, the most common approximations currently used are often not accurate. Furthermore, a procedure for the termination of a metasurface, with application-driven goals, is given.

Originality/value

This paper investigates the distribution of the currents in a 2D metamaterial realized with magnetically coupled resonant coils. Different models for the analysis of these structures are illustrated, and the effects of the approximations they introduce on the current values are shown and discussed. Furthermore, proper terminations of the resonators on the boundaries have been investigated by implementing a numerical optimization procedure with the purpose of achieving a uniform distribution of the resonator currents. The results show that the behavior of a metasurface (in terms of currents in each single resonator) depends on different properties; as a consequence, their design is not a trivial task and is dependent on the specific applications they are designed for. A design strategy, with lumped impedance termination, is here proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 June 2022

Afaq Ahmad, Zahoor Ahmad, Abdullah Ullah, Naveed Ur Ur Rehman, Muhammad Israr, Muhammad Zia, Haider Ali and Ataur Rahman

This study aims to investigate and compare the characteristics of three topologies of moving-magnet linear oscillating actuator (LOA) based on their mover position. Positive…

60

Abstract

Purpose

This study aims to investigate and compare the characteristics of three topologies of moving-magnet linear oscillating actuator (LOA) based on their mover position. Positive aspects and consequences of every topology are demonstrated. Three topologies of axially magnetized moving-magnet LOA; outer mover, inner mover (IM) and dual stator (DS) are designed and examined. Due to its characteristically high thrust density and more mechanical strength, axially magnetized tubular permanent magnets (PMs) are used in these topologies.

Design/methodology/approach

LOAs are designed and optimized using parametric sweep, in term of design parameters and output parameters like thrust force, stroke and operating resonance frequency of the LOA. All the pros and cons of each topology are investigated and compared. Output parameters of the LOAs are compared using same size of the investigated LOAs. Mover mass, which plays a vital role in resonant operation, is analyzed for IM and DS designs. Investigated LOAs are compared with conventional designs of LOA for compressor in refrigeration system with regards of motor constant, stroke and thrust per PM mass.

Findings

This paper analyzes three topologies of moving-magnet LOAs. The basic difference between investigated LOAs is the radius of tubular-shaped mover from its central axis. All the design parameters are compared and concluded that thrust per PM mass of IMLOA is maximum. OMLOA provides maximum motor constant of value 180 N/A. DSLOA provides thrust force with motor constant 120 N/A and required intermediate materials of PMs. All the three designs give the best results in terms of motor constant and thrust per PM mass, compared to conventional designs of LOA.

Originality/value

This paper determines the impact of mover position from its central axis in a tubular-shaped moving-magnet LOA. This work is carried out in correspondence of latest papers of LOA.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 2024

Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian-Poodeh

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies…

Abstract

Purpose

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies based on the concept of thermal resistance.

Design/methodology/approach

For regular windings, the periodic microscopic cell in the winding space is identified. Also, for irregular windings, the average microscopic cell of the winding is determined. An approximation is used to calculate the thermal resistance of the winding cell. Based on this approximation, the winding insulation is considered as a circular ring around the wire. Mathematical equations are obtained to calculate the equivalent thermal resistance of the cell. The equivalent thermal conductivity of the winding is calculated using equivalent thermal resistance of the cell. Winding thermal homogenization is completed by determining the equivalent thermal properties of the cell.

Findings

The thermal pattern of different windings is simulated and compared with the results of different homogenization methods. The results show that the proposed method is applicable for a wide range of windings in terms of winding scheme, packing factor and winding insulation. Also, the results show that the proposed method is more accurate than other winding homogenization methods in calculating the equivalent thermal conductivity of the winding.

Research limitations/implications

In this paper, the change of electrical resistance of the winding with temperature and thermal contact between the sub-components are ignored. Also, liquid insulators, such as oils, and rectangular wires were not investigated. Research in these topics is considered as future work.

Originality/value

Unlike other homogenization methods, the proposed method can be applied to non-impregnated and irregular windings. Also, compared to other homogenization methods, the proposed method has a simpler formulation that makes it easier to program and implement. All of these indicate the efficiency of the proposed method in the thermal analysis of the winding.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 September 2023

Dangshu Wang, Xuan Deng, Zhimin Guan, Shulin Liu, Yaqiang Yang and Xinxia Wang

To simplify the circuit design and control complexity of the magnetic coupling resonant wireless charging system, the radio energy transmission constant current and constant…

57

Abstract

Purpose

To simplify the circuit design and control complexity of the magnetic coupling resonant wireless charging system, the radio energy transmission constant current and constant voltage charging is realized.

Design/methodology/approach

The purpose of this study is to simplify the circuit design and control complexity of the magnetic coupling resonance wireless charging system, in order to achieve constant current and constant voltage charging for wireless energy transmission. First, the principle of LCC/S-S compensation structure is analyzed, and the equivalent mathematical model is established; then, the system characteristics under constant current and constant voltage mode are analyzed, and the design method of system parameters is given; finally, a simulation and experimental system is built to verify the correctness and feasibility of the theoretical analysis.

Findings

The results show that the proposed hybrid topology can achieve a constant current output of 2 A and a constant voltage output of 30 V under variable load conditions, and effectively suppress the current distortion problem under light load conditions. The waveform distortion rate of the inverter current is reduced from 33.97% to 10.45%.

Originality/value

By changing the high-order impedance characteristics of the compensation structure, the distortion of the current waveform under light load is suppressed, and the overall stability and efficiency of the system are improved.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 25 April 2023

Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian

An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer…

Abstract

Purpose

An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer winding creates a complex and heterogeneous thermal structure. There are very few researches that are completely focused on the thermal analysis of electromagnets. The purpose of this paper is to provide an accurate, yet fast and simple method for the thermal analysis of cylindrical electromagnets in both transient and steady-state modes. For this purpose, a thermal equivalent circuit (TEC) is presented based on the nodding approach.

Design/methodology/approach

The results of TEC analysis of cylindrical electromagnet, for two orthogonal and orthocyclic winding coil technologies, were compared with the results of the thermal simulation in COMSOL. The authors also built a laboratory model of the cylindrical electromagnet, similar to those analyzed and simulated, and measured the temperature in different parts of it.

Findings

The comparison of the results obtained from different methods for the thermal analysis of the cylindrical electromagnet indicates that the proposed TEC has an error of less than 2%. The simplicity and high accuracy of the results are the most important advantages of the proposed TEC.

Originality/value

Comparing the information and results related to winding schemes, indicates that the orthogonal winding has less cost and weight due to the shorter length of the wire used. On the other hand, orthocyclic winding generates lower temperature and has more lifting force, and is simpler to implement. Therefore, in practice, orthocyclic winding technology is usually used.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 125