Search results

1 – 10 of over 3000
Article
Publication date: 5 November 2019

Yosuke Horiba, Ayumu Tokutake and S. Inui

Mobility is one of the important elements in clothing design. The purpose of this paper is to examine the predictability of clothing mobility via musculoskeletal simulation.

Abstract

Purpose

Mobility is one of the important elements in clothing design. The purpose of this paper is to examine the predictability of clothing mobility via musculoskeletal simulation.

Design/methodology/approach

In order to carry out the musculoskeletal simulation considering the influence of clothing, simulation of the dressed state was attempted. This paper simulated the dressed state and measured the motion-related deformation of the clothing to estimate the force applied to the human body based on the material property of the clothing samples. The dressed state was simulated using an external force in the musculoskeletal model.

Findings

When the elbow flexion torque with an elbow supporter was calculated using the above-mentioned method of musculoskeletal simulation, it was confirmed that the lower the stretchability of the sample, the higher the elbow flexion torque. In addition, the sensory evaluation performed under the same condition as that in the simulation showed that the lower the joint torque during the motion, the higher the subjective mobility, and that the higher the joint torque, the lower the subjective mobility. Thus, it is suggested that musculoskeletal simulation of the dressed state can predict the clothing mobility.

Research limitations/implications

However, the method proposed in this paper requires the measurement of the deformation of the clothing to estimate the force applied to the human body. Thus, it is difficult to apply this in the measurement of general clothing that allows enough space between it and the human body, requiring further improvement of the dressed state simulation method.

Originality/value

Because it is difficult to estimate the force applied by the clothing to the human body, only a few studies have performed analysis on the effect of clothing by using musculoskeletal simulation. Conversely, although the force applied by the clothing to the human body needs to be estimated in advance by the measurement of the deformation, the utility of the simulation in clothing design seems to be high because the simulation can estimate clothing mobility and the effects of clothing on muscle activity.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 August 2014

Liu Jiongzhou, Li Jituo and Lu Guodong

The 3D dynamic clothing simulation is widely used in computer-added garment design. Collision detection and response are the essential component and also the efficiency bottleneck…

Abstract

Purpose

The 3D dynamic clothing simulation is widely used in computer-added garment design. Collision detection and response are the essential component and also the efficiency bottleneck in the simulation. The purpose of this paper is to propose a high efficient collision detection algorithm for 3D clothing-human dynamic simulation to achieve both real-time and virtually real simulation effects.

Design/methodology/approach

The authors approach utilizes the offline data learning results to simplify the online collision detection complexity. The approach includes two stages. In the off-line stage, model triangles with most similar deformations are first, partitioned into several near-rigid-clusters. Clusters from the clothing model and the human model are matched as pairs according to the fact that they hold the potential to intersect. For each cluster, a hierarchical bounding box tree is then constructed. In the on-line stage, collision detection is checked and treated parallelly inside each cluster pairs. A multiple task allocation strategy is proposed in parallel computation to ensure efficiency.

Findings

Reasonably partitioning the 3D clothing and human model surfaces into several clusters and implementing collision detection on these cluster pairs can efficiently reduce the model primitive amounts that need be detected, consequently both improving the detection efficiency and remaining the simulation virtual effect.

Originality/value

The current methods only utilize the dynamic clothing-human status; the authors algorithm furthermore combines the intrinsic correspondence relationship between clothing and human clusters to efficiently shrink the detection query scope to accelerate the detection speed. Moreover, partitioning the model into several independent clusters as detection units is much more profitable for parallel computation than current methods those treat the model entirety as the unit.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 24 April 2024

Yuhong Li, Hang Gao and Xiaokun Yu

This study aims to increase the novelty of clothing design and fabric texture. The element library that can be used for design is systematically summarized. The element database…

Abstract

Purpose

This study aims to increase the novelty of clothing design and fabric texture. The element library that can be used for design is systematically summarized. The element database can also be continuously filled according to the existing logic to realize the diversity of design. Improve the theory of fashion design, expand the designer's design ideas and improve design efficiency. Clear design steps and logic can help students and machines learn the design process and promote the development of intelligent design. And verify the feasibility of the simulation software to assist pleated clothing design.

Design/methodology/approach

Firstly, according to the logical framework of origami theory, different innovative designs and combined designs are made for the basic units of hyperbolic paraboloid, and the element library that can be used for design is systematically summarized. This database can also be continuously filled according to the existing logic to realize the diversity of design. Secondly, it summarizes three methods of pleated element filling clothing – uniform filling method, the irregular filling method and geometric addition method – that improve the theory of fashion design, expand the designer's design ideas and improve design efficiency. Clear design steps and logic can help students and machines learn the design process and promote the development of intelligent design. Finally, the virtual software is used to simulate the effect of pleated clothing, and the three-dimensional simulation software 3dclo is used to make an empirical study on the application of hyperbolic paraboloid origami in clothing pleated design to verify the feasibility of the simulation software to assist pleated clothing design.

Findings

The theoretical results of hyperbolic paraboloid origami are collected and arranged to establish the element library of hyperbolic paraboloid origami. The results expand the designer's design ideas and auxiliary design technology and improve the design efficiency using a sample of hyperbolic paraboloid fabric to verify its practicability and three-dimensional clothing simulation software for exploring the design. The design rules of hyperbolic paraboloid clothing and the realization method of fabric are summarized, including the expansion and combing of elements, the application of size and shape and the method of combination.

Research limitations/implications

Owing to the hyperbolic paraboloid origami’s length shrinkage, the loose computation of clothing requires targeted computation. This paper solely applies a paper model for estimating the shrinkage, and then we tend to subsequently explore the way to precisely compute the porosity, to determine the existing differences in the two-dimensional shrinkage of hyperbolic paraboloid creases of varying materials and to know if the clothing after large-scale production is capable of reaching the anticipated value.

Practical implications

The exploration of this experiment brings a new 3D experiment process to the design process.

Social implications

This experiment brings new possibilities for the development of virtual fitting and virtual display in the industry.

Originality/value

This study combines hyperbolic paraboloid origami and clothing and combs and expands the unit with logical thinking to expand the designer's design ideas.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 October 2001

Shigeru Inui

The body model which has been utilized in our clothing simulation does not deform and gives a boundary condition for mechanical calculation. To determine the shape of clothing in…

Abstract

The body model which has been utilized in our clothing simulation does not deform and gives a boundary condition for mechanical calculation. To determine the shape of clothing in the case where clothing and body mechanically interact with each other, the body model used for this purpose has to be deformable. In this study, basic techniques for realization of the deformable body model were investigated. A tetrahedron was defined as a fundamental element for mechanical calculation of solid, and it was formulated with ordinal strain. Four kinds of cubes consisting of six tetrahedrons were defined as basic geometrical elements for constructing solids. Two kinds of cantilevers were constructed from the cubes and mechanical simulation was carried out with proper mechanical properties. A method of estimating internal mechanical properties of the human body was tested. The method is a modification of the simulation and is one of inverse problems. Treatment of collision is required for the simulation in which clothing and body mechanically interact with each other. The treatment of collision is based on a triangular element, and the processes consist of its detection and resolution. Simulation of a right cylinder solid wound by fabric like pipe was carried out to check collision treatment.

Details

International Journal of Clothing Science and Technology, vol. 13 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3554

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2001

George Stylios

Discusses the 6th ITCRR, its breadth of textile and clothing research activity, plus the encouragement given to workers in this field and its related areas. States that, within…

1078

Abstract

Discusses the 6th ITCRR, its breadth of textile and clothing research activity, plus the encouragement given to workers in this field and its related areas. States that, within the newer research areas under the microscope of the community involved, technical textiles focuses on new, ‘smart’ garments and the initiatives in this field in both the UK and the international community at large. Covers this subject at length.

Details

International Journal of Clothing Science and Technology, vol. 13 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 March 2018

Anna Katarzyna Dabrowska

The purpose of this paper is to develop artificial neural networks (ANNs) allowing us to simulate the local thermal insulation of clothing protecting against cold on a basis of…

Abstract

Purpose

The purpose of this paper is to develop artificial neural networks (ANNs) allowing us to simulate the local thermal insulation of clothing protecting against cold on a basis of the characteristics of materials and design solutions used.

Design/methodology/approach

For this purpose, laboratory tests of thermal insulation of clothing protecting against cold as well as thermal resistance of textile systems used in the clothing were performed. These tests were conducted with a use of thermal manikin and so-called skin model, respectively. On a basis of results gathered, 12 ANNs were developed that correspond to each thermal manikin’s segment besides hands and feet which are not covered by protective clothing.

Findings

In order to obtain high level of simulations, optimization measures for the developed ANNs were introduced. Finally, conducted validation indicated a very high correlation (above 0.95) between theoretical and experimental results, as well as a low error of the simulations (max 8 percent).

Originality/value

The literature reports addressing the problem of modeling thermal insulation of clothing focus mainly on the impact of the degree of fit and the velocity of air movement on thermal insulation properties, whereas reports dedicated to modeling the impact of the construction of clothing protecting against cold as well as of diverse material systems used within one design of clothing on its thermal insulation are scarce.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 November 2011

George K. Stylios

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2003

George K. Stylios

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

1197

Abstract

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 15 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2002

George K. Stylios

Looks at the eighth published year of the ITCRR and the research, from far and near, involved in this. Muses on the fact that, though all the usual processes are to the fore, the…

Abstract

Looks at the eighth published year of the ITCRR and the research, from far and near, involved in this. Muses on the fact that, though all the usual processes are to the fore, the downside part of the industry is garment making which is the least developed side. Posits that the manufacture of clothing needs to become more technologically advanced as does retailing. Closes by emphasising support for the community in all its efforts.

Details

International Journal of Clothing Science and Technology, vol. 14 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 3000