Search results

1 – 5 of 5
Book part
Publication date: 6 May 2024

Nadia Gulko, Flor Silvestre Gerardou and Nadeeka Withanage

Corporate Social Responsibility (CSR) reporting has been widely accepted as a vital tool for communicating with stakeholders on a range of social, environmental, and governance…

Abstract

Corporate Social Responsibility (CSR) reporting has been widely accepted as a vital tool for communicating with stakeholders on a range of social, environmental, and governance issues, but how companies define, interpret, apply, integrate, and communicate their CSR efforts and impacts in corporate reporting is anything but a straightforward task. The purpose of this chapter is to explore the concept of materiality in CSR reporting and demonstrate practical examples of good CSR and Sustainable Development Goals (SDGs) reporting practices. We chose the aviation industry because of its economic relevance, constant growth, and future expected changes in the aftermath of COVID-19. In addition, airlines affect many of the SDGs directly and indirectly with contending results. This chapter is timely because of the growing willingness by companies to integrate CSR and environmental, social, and governance (ESG) thinking into the corporate strategy and business operations using materiality assessment and enhancing their competitive advantage and ability to maintain long-term value and because ESG and ethical investing have become part of the mainstream investing. Thus, this chapter contributes to an understanding of the wide range of existing and new reporting frameworks and regulations and reinforces the importance of discussing how this diversity of approaches can affect the work toward worldwide comparability of CSR and sustainability reporting.

Details

The Emerald Handbook of Ethical Finance and Corporate Social Responsibility
Type: Book
ISBN: 978-1-80455-406-7

Keywords

Article
Publication date: 10 May 2024

Ye Li, Chengyun Wang and Junjuan Liu

In this essay, a new NDAGM(1,N,α) power model is recommended to resolve the hassle of the distinction between old and new information, and the complicated nonlinear traits between…

Abstract

Purpose

In this essay, a new NDAGM(1,N,α) power model is recommended to resolve the hassle of the distinction between old and new information, and the complicated nonlinear traits between sequences in real behavior systems.

Design/methodology/approach

Firstly, the correlation aspect sequence is screened via a grey integrated correlation degree, and the damped cumulative generating operator and power index are introduced to define the new model. Then the non-structural parameters are optimized through the genetic algorithm. Finally, the pattern is utilized for the prediction of China’s natural gas consumption, and in contrast with other models.

Findings

By altering the unknown parameters of the model, theoretical deduction has been carried out on the newly constructed model. It has been discovered that the new model can be interchanged with the traditional grey model, indicating that the model proposed in this article possesses strong compatibility. In the case study, the NDAGM(1,N,α) power model demonstrates superior integrated performance compared to the benchmark models, which indirectly reflects the model’s heightened sensitivity to disparities between new and old information, as well as its ability to handle complex linear issues.

Practical implications

This paper provides a scientifically valid forecast model for predicting natural gas consumption. The forecast results can offer a theoretical foundation for the formulation of national strategies and related policies regarding natural gas import and export.

Originality/value

The primary contribution of this article is the proposition of a grey multivariate prediction model, which accommodates both new and historical information and is applicable to complex nonlinear scenarios. In addition, the predictive performance of the model has been enhanced by employing a genetic algorithm to search for the optimal power exponent.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 9 May 2024

Saeed Reza Mohandes, Atul Kumar Singh, Abdulwahed Fazeli, Saeed Banihashemi, Mehrdad Arashpour, Clara Cheung, Obuks Ejohwomu and Tarek Zayed

Previous research has demonstrated that Digital Twins (DT) are extensively employed to improve sustainable construction methods. Nonetheless, their uptake in numerous nations is…

Abstract

Purpose

Previous research has demonstrated that Digital Twins (DT) are extensively employed to improve sustainable construction methods. Nonetheless, their uptake in numerous nations is still constrained. This study seeks to identify and examine the digital twin’s implementation barriers in construction building projects to augment operational performance and sustainability.

Design/methodology/approach

An iterative two-stage approach was adopted to explore the phenomena under investigation. General DT Implementation Barriers were first identified from extant literature and subsequently explored using primary questionnaire survey data from Hong Kong building industry professionals.

Findings

Survey results illustrated that Lack of methodologies and tools, Difficulty in ensuring a high level of performance in real-time communication, Impossibility of directly measuring all data relevant to the DT, need to share the DT among multiple application systems involving multiple stakeholders and Uncertainties in the quality and reliability of data are the main barriers for adopting digital twins' technology. Moreover, Ginni’s mean difference measure of dispersion showed that the stationary digital twin’s barriers adoption is needed to share the DT among multiple application systems involving multiple stakeholders.

Practical implications

The study’s findings offer valuable guidance to the construction industry. They help stakeholders adopt digital twins' technology, which, in turn, improves cost efficiency and sustainability. This adoption reduces project expenses and enhances environmental responsibility, providing companies a competitive edge in the industry.

Originality/value

This research rigorously explores barriers to Digital Twin (DT) implementation in the Hong Kong construction industry, employing a systematic approach that includes a comprehensive literature review, Ranking Analysis (RII) and Ginni’s coefficient of mean difference (GM). With a tailored focus on Hong Kong, the study aims to identify, analyze and provide novel insights into DT implementation challenges. Emphasizing practical relevance, the research bridges the gap between academic understanding and real-world application, offering actionable solutions for industry professionals, policymakers and researchers. This multifaceted contribution enhances the feasibility and success of DT implementation in construction projects within the Architecture, Engineering and Construction (AEC) sector.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 26 January 2023

Afiqah R. Radzi, Nur Farhana Azmi, Syahrul Nizam Kamaruzzaman, Rahimi A. Rahman and Eleni Papadonikolaki

Digital twin (DT) and building information modeling (BIM) are interconnected in some ways. However, there has been some misconception about how DT differs from BIM. As a result…

Abstract

Purpose

Digital twin (DT) and building information modeling (BIM) are interconnected in some ways. However, there has been some misconception about how DT differs from BIM. As a result, industry professionals reject DT even in BIM-based construction projects due to reluctance to innovate. Furthermore, researchers have repeatedly developed tools and techniques with the same goals using DT and BIM to assist practitioners in construction projects. Therefore, this study aims to assist industry professionals and researchers in understanding the relationship between DT and BIM and synthesize existing works on DT and BIM.

Design/methodology/approach

A systematic review was conducted on published articles related to DT and BIM. A total record of 54 journal articles were identified and analyzed.

Findings

The analysis of the selected journal articles revealed four types of relationships between DT and BIM: BIM is a subset of DT, DT is a subset of BIM, BIM is DT, and no relationship between BIM and DT. The existing research on DT and BIM in construction projects targets improvements in five areas: planning, design, construction, operations and maintenance, and decommissioning. In addition, several areas have emerged, such as developing geo-referencing approaches for infrastructure projects, applying the proposed methodology to other construction geometries and creating 3D visualization using color schemes.

Originality/value

This study contributed to the existing body of knowledge by overviewing existing research related to DT and BIM in construction projects. Also, it reveals research gaps in the body of knowledge to point out directions for future research.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 6 May 2024

Hansu Kim, Luke Crispo, Nicholas Galley, Si Mo Yeon, Yong Son and Il Yong Kim

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight…

Abstract

Purpose

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight topology-optimized designs with improved performance, but limited build volume restricts the printing of large components. The purpose of this paper is to design a lightweight aircraft seat leg structure using topology optimization (TO) and MAM with build volume restrictions, while satisfying structural airworthiness certification requirements.

Design/methodology/approach

TO was used to determine a lightweight conceptual design for the seat leg structure. The conceptual design was decomposed to meet the machine build volume, a detailed CAD assembly was designed and print orientation was selected for each component. Static and dynamic verification was performed, the design was updated to meet the structural requirements and a prototype was manufactured.

Findings

The final topology-optimized seat leg structure was decomposed into three parts, yielding a 57% reduction in the number of parts compared to a reference design. In addition, the design achieved an 8.5% mass reduction while satisfying structural requirements for airworthiness certification.

Originality/value

To the best of the authors’ knowledge, this study is the first paper to design an aircraft seat leg structure manufactured with MAM using a rigorous TO approach. The resultant design reduces mass and part count compared to a reference design and is verified with respect to real-world aircraft certification requirements.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 5 of 5