Search results

1 – 5 of 5
Article
Publication date: 12 October 2023

Sasireka Perumalsamy, Kavya G. and Rajkumar S.

This paper aims to propose a two-element dual fed ultra-wideband (UWB) multiple input multiple output (MIMO) antenna system with no additional decoupling structures. The antenna…

Abstract

Purpose

This paper aims to propose a two-element dual fed ultra-wideband (UWB) multiple input multiple output (MIMO) antenna system with no additional decoupling structures. The antenna operates from 3.1 to 10.6 GHz. The antenna finds its usage in on-body wearable device applications.

Design/methodology/approach

The antenna system measures 63.80 × 29.80 × 0.7 mm. The antenna radiating element is designed by using a modified dumbbell-shaped structure. Jean cloth material is used as substrate. The isolation improvement is achieved through spacing between two elements.

Findings

The proposed antenna has a very low mutual coupling of S21 < −20 dB and impedance matching of S11 < −10 dB. The radiation characteristics are stable in the antenna operating region. It provides as ECC < 0.01, diversity gain >9.9 dB. The antenna offers low average specific absorption rate (SAR) of 0.169 W/kg. The simulated and measured results are found to be in reasonable match.

Originality/value

The MIMO antenna is proposed for on-body communication, hence, a very thin jean cloth material is used as substrate. This negates the necessity of additional material usage in antenna design and the result range indicates good diversity performance and with a low SAR of 0.169 W/kg for on-body performance. This makes it a suitable candidate for textile antenna application.

Details

Microelectronics International, vol. 41 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 27 January 2023

Dhanalakshmi K.M., Kavya G. and Rajkumar S.

This paper aims to propose a single element, dual feed, polarisation diversity antenna. The proposed antenna operates from 2.9 to 10.6 GHz for covering the entire ultra-wideband…

Abstract

Purpose

This paper aims to propose a single element, dual feed, polarisation diversity antenna. The proposed antenna operates from 2.9 to 10.6 GHz for covering the entire ultra-wideband (UWB) frequency range. The antenna is designed for usage in massive multiple input multiple output (MIMO) and closed packaging applications.

Design/methodology/approach

The size of the antenna is 24 × 24 × 1.6 mm3. The radiating element of the antenna is derived from the Sierpinski–Knopp (SK) fractal geometry for miniaturization of the antenna size. The antenna has a single reflecting stub placed between the two orthogonal feeds, to improve isolation.

Findings

The proposed antenna system exhibits S11 < −10 dB, S21 < −15 dB and stable radiation characteristics in the entire operating region. It also offers an envelope correlation coefficient < 0.01, a diversity gain > 9.9 dB and a capacity loss < 0.4 bps/Hz. The simulated and measured outputs were compared and results were found to be in similarity.

Originality/value

The proposed UWB-MIMO antenna has significant size reduction through usage of SK fractal geometry for radiating element. The antenna uses a single radiating element with dual feed. The stub is between the antenna elements which provide a compact and miniaturized MIMO solution for high density packaging applications. The UWB-MIMO antenna provides an isolation better than −20 dB in the entire UWB operating band.

Article
Publication date: 6 July 2023

Iqra Masroor and Jamshed Aslam Ansari

Compact and wideband antennas are the need of modern wireless systems that preferably work with compact, low-profile and easy-to-install devices that provide a wider coverage of…

Abstract

Purpose

Compact and wideband antennas are the need of modern wireless systems that preferably work with compact, low-profile and easy-to-install devices that provide a wider coverage of operating frequencies. The purpose of this paper is to propose a novel compact and ultrawideband (UWB) microstrip patch antenna intended for high frequency wireless applications.

Design/methodology/approach

A square microstrip patch antenna was initially modeled on finite element method-based electromagnetic simulation tool high frequency structure simulator. It was then loaded with a rectangular slit and Koch snowflake-shaped fractal notches for bandwidth enhancement. The fabricated prototype was tested by using vector network analyzer from Agilent Technologies, N5247A, Santa Clara, California, United States (US).

Findings

The designed Koch fractal patch antenna is highly compact with dimensions of 10 × 10 mm only and possesses UWB characteristics with multiple resonances in the operating band. The −10 dB measured impedance bandwidth was observed to be approximately 13.65 GHz in the frequency range (23.20–36.85 GHz).

Originality/value

Owing to its simple and compact structure, positive and substantial gain values, high radiation efficiency and stable radiation patterns throughout the frequency band of interest, the proposed antenna is a suitable candidate for high frequency wireless applications in the K (18–27 GHz) and Ka (26.5–40 GHz) microwave bands.

Details

Microelectronics International, vol. 41 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 November 2023

Serap Kiriş and Muharrem Karaaslan

The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to…

Abstract

Purpose

The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to provide space gain on the aircraft.

Design/methodology/approach

To create an easy-to-produce MIMO, a two-storied structure consisting of a reflector and a top antenna was designed. The dimensions of the reflector were prevented to get smaller to supply easy production. The unit cell nearly with the same dimensions of a lower frequency was protected through the original cell design. The co-planar structure with the use of a via connection was modified and a structure was achieved with no need to via for easy production, too. Finally, the antennas were placed side by side and the distance between them was optimized to achieve a MIMO operation.

Findings

As a result, an easy-to-produce, compact and successful radio altimeter antenna was obtained with high antenna parameters such as 10.14 dBi gain and 10.55 dBi directivity, and the conical pattern along with proper MIMO features, through original reflector surface and top antenna system.

Originality/value

Since radio altimeter antennas require high radiation properties, the microstrip antenna structure is generally used in literature. This paper contributes by presenting the radio altimeter application with antenna-reflective structure participation. The technical solutions were developed during the design, focusing on an easy manufacturing process for both the reflective surface and the upper antenna. Also, the combination of International Telecommunication Union’s recommended features that require high antenna properties was achieved, which is challenging to reach. In addition, by operating the antenna as a successful MIMO, two goals of easy production and space gain on aircraft have been attained at the same time.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 5 of 5