Search results

1 – 4 of 4
Article
Publication date: 13 September 2024

A.M. Obalalu, E.O. Fatunmbi, J.K. Madhukesh, S.H.A.M. Shah, Umair Khan, Anuar Ishak and Taseer Muhammad

Recent advancements in technology have led to the exploration of solar-based thermal radiation and nanotechnology in the field of fluid dynamics. Solar energy is captured through…

Abstract

Purpose

Recent advancements in technology have led to the exploration of solar-based thermal radiation and nanotechnology in the field of fluid dynamics. Solar energy is captured through sunlight absorption, acting as the primary source of heat. Various solar technologies, such as solar water heating and photovoltaic cells, rely on solar energy for heat generation. This study focuses on investigating heat transfer mechanisms by utilizing a hybrid nanofluid within a parabolic trough solar collector (PTSC) to advance research in solar ship technology. The model incorporates multiple effects that are detailed in the formulation.

Design/methodology/approach

The mathematical model is transformed using suitable similarity transformations into a system of higher-order nonlinear differential equations. The model was solved by implementing a numerical procedure based on the Wavelets and Chebyshev wavelet method for simulating the outcome.

Findings

The velocity profile is reduced by Deborah's number and velocity slip parameter. The Ag-EG nanoparticles mixture demonstrates less smooth fluid flow compared to the significantly smoother fluid flow of the Ag-Fe3O4/EG hybrid nanofluids (HNFs). Additionally, the Ag-Ethylene Glycol nanofluids (NFs) exhibit higher radiative performance compared to the Ag-Fe3O4/Ethylene Glycol hybrid nanofluids (HNFs).

Practical implications

Additionally, the Oldroyd-B hybrid nanofluid demonstrates improved thermal conductivity compared to traditional fluids, making it suitable for use in cooling systems and energy applications in the maritime industry.

Originality/value

The originality of the study lies in the exploration of the thermal transport enhancement in sun-powered energy ships through the incorporation of silver-magnetite hybrid nanoparticles within the heat transfer fluid circulating in parabolic trough solar collectors. This particular aspect has not been thoroughly researched previously. The findings have been validated and provide a highly positive comparison with the research papers.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Content available
Book part
Publication date: 4 October 2024

Abstract

Details

The Emerald Handbook of Fintech
Type: Book
ISBN: 978-1-83753-609-2

Book part
Publication date: 4 October 2024

Manuel Stagars and Ioannis Akkizidis

Marketplace lending has substantially changed since the first peer-to-peer lending platforms emerged in 2006. The industry is now an alternative to bank lending, predicted to…

Abstract

Marketplace lending has substantially changed since the first peer-to-peer lending platforms emerged in 2006. The industry is now an alternative to bank lending, predicted to total $70 billion for consumer and business loans worldwide by 2030. Marketplace lending is often deemed less safe than bank loans, mainly due to these portfolios' high degree of hidden information. These include needing more information on borrowers and potential correlations between them, which might lead to higher risk than is apparent at first glance. Deterministic processes cannot capture tail risk appropriately, so platforms and lenders should employ stochastic processes. This chapter introduces a Monte Carlo simulation and machine learning (ML) process to evaluate and monitor portfolios. For marketplace lending to become a viable and sustainable alternative to bank lending platforms, they must better evaluate, monitor, and manage tail risk in marketplace loans and develop tools to monitor and manage financial risk losses.

Article
Publication date: 22 August 2024

Gopi V and Vijaya Kumar Avula Golla

This paper aims to explore the numerical study of the steady two-dimensional MHD hybrid Cu-Fe3O4/EG nanofluid flows over an inclined porous plate with an inclined magnetic effect…

Abstract

Purpose

This paper aims to explore the numerical study of the steady two-dimensional MHD hybrid Cu-Fe3O4/EG nanofluid flows over an inclined porous plate with an inclined magnetic effect. Iron oxide (Fe3O4) and copper (Cu) are hybrid nanoparticles, with ethylene glycol as the base fluid. The effects of several physical characteristics, such as the inclination angle, magnetic parameter, thermal radiation, viscous propagation, heat absorption and convective heat transfer, are revealed by this exploration.

Design/methodology/approach

Temperature and velocity descriptions, along with the skin friction coefficient and Nusselt number, are studied to see how they change depending on the parameters. Using compatible similarity transformations, the controlling equations, including those describing the momentum and energy descriptions, are turned into a set of non-linear ordinary differential equations. The streamlined mathematical model is then solved numerically by using the shooting approach and the Runge–Kutta method up to the fourth order. The numerical findings of skin friction and Nusselt number are compared and discussed with prior published data by Nur Syahirah Wahid.

Findings

The graphical representation of the velocity and temperature profiles within the frontier is exhibited and discussed. The various output values related to skin friction and the Nusselt number are shown in the table.

Originality/value

The new results are compared to past research and discovered to agree significantly with those authors’ published works.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 4 of 4