Search results

1 – 10 of 31
Open Access
Article
Publication date: 25 July 2022

Cara Greta Kolb, Maja Lehmann, Johannes Kriegler, Jana-Lorena Lindemann, Andreas Bachmann and Michael Friedrich Zaeh

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

928

Abstract

Purpose

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

Design/methodology/approach

A detailed examination of the components and the associated properties of the electrode dispersions has been carried out. The requirements of the printing process and the resulting performance characteristics of the electrode dispersions were analyzed in a top–down approach. The product and process side were compared, and the target specifications of the dispersion components were derived.

Findings

Target ranges have been identified for the main component properties, balancing the partly conflicting goals between the product and the process requirements.

Practical implications

The findings are expected to assist with the formulation of electrode dispersions as printing inks.

Originality/value

Little knowledge is available regarding the particular requirements arising from the systematic qualification of aqueous electrode dispersions for inkjet printing. This paper addresses these requirements, covering both product and process specifications.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 14 September 2010

22

Abstract

Details

Pigment & Resin Technology, vol. 39 no. 5
Type: Research Article
ISSN: 0369-9420

Open Access
Article
Publication date: 1 July 2020

Milena Kiliszkiewicz, Dariusz Przybylski, Jan Felba and Ryszard Korbutowicz

The purpose of this paper is to analyze the individual steps during the printing of capacitor structures. The method of substrate preparation, the obtained roughness of conductive…

748

Abstract

Purpose

The purpose of this paper is to analyze the individual steps during the printing of capacitor structures. The method of substrate preparation, the obtained roughness of conductive and dielectric layers are examined. Moreover, the capacitances of the obtained capacitors were examined.

Design/methodology/approach

Surface roughness and microscopic analysis were used to assess the quality of printed conductive structures. Two criteria were used to assess the quality of printed dielectric structures: the necessary lack of discontinuity of layers and minimal roughness. To determine the importance of printing parameters, a draft experimental method was proposed.

Findings

The optimal way to clean the substrate has been determined. The most important parameters for the dielectric layer (i.e. drop-space, table temperature, curing time and temperature) were found.

Research limitations/implications

If dielectric layers are printed correctly, most problems with printing complex electronic structures (transistors, capacitors) will be eliminated.

Practical implications

The tests performed identified the most important factors for dielectric layers. Using them, capacitors of repeatable capacity were printed.

Originality/value

In the literature on this subject, no factors were found which were responsible for obtaining homogeneous dielectric layers.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Content available
Article
Publication date: 20 November 2009

48

Abstract

Details

Circuit World, vol. 35 no. 4
Type: Research Article
ISSN: 0305-6120

Content available
Article
Publication date: 1 August 2004

168

Abstract

Details

Pigment & Resin Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0369-9420

Open Access
Article
Publication date: 15 August 2016

Belen Begines, Andrew L. Hook, Morgan R. Alexander, Christopher J. Tuck and Ricky D. Wildman

This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers.

2439

Abstract

Purpose

This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers.

Design/methodology/approach

The first step towards printing was ink development. Inks were characterised to carry out an estimation of their potential printability using the Z parameter to predict stable jetting conditions. Printability conditions were optimised for each ink using a Dimatix DMP-2800, which enabled 3D structures to be fabricated.

Findings

UV photo-initiated polymers, which resist bacterial attachment, were found to be printable using piezo-based inkjet printers. The waveform required for each ink depends on the value of the Z parameter. Once the waveform and the printability parameters were optimised, 3D objects were fabricated.

Research limitations/implications

This methodology has been confirmed as an effective method to 3D print materials that have been demonstrated to be bacteria resistant. However, ink curing depends on modification of some parameters (such as photoinitiator concentration or UV exposure time) which would result in an improvement of the curing process post jetting.

Social implications

The combination of inkjet based 3D printing with new materials resistant to bacterial attachment means the possibility of building customised medical devices with a high level of complexity and bespoke features can be fully realised. The scope and variability of the devices produced will exceed what can be achieved using standard fabrication methodologies and can be applied to reduce the incidence of device associated infections and to address increased morbidity, mortality and health care costs associated with nosocomial infections.

Originality/value

In this paper, the novel use of materials that resist bacterial attachment has been described to build 3D structures using material jetting. Its value lies on the potential impact this methodology could produce in the biomedical device and research fields.

Details

Rapid Prototyping Journal, vol. 22 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Details

Circuit World, vol. 35 no. 2
Type: Research Article
ISSN: 0305-6120

Abstract

Details

Soldering & Surface Mount Technology, vol. 21 no. 2
Type: Research Article
ISSN: 0954-0911

Content available
79

Abstract

Details

Pigment & Resin Technology, vol. 38 no. 1
Type: Research Article
ISSN: 0369-9420

Content available
Article
Publication date: 1 August 2005

John Ling

64

Abstract

Details

Microelectronics International, vol. 22 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 31