Search results

1 – 10 of 144
Article
Publication date: 1 February 1999

R. Bongiovanni, G. Malucelli and A. Priola

UVcurable systems based on the copolymerisation of a typical acrylic resin with low amount of fluorinated monomers (less than 1 per cent w/w) were prepared. The bulk properties…

242

Abstract

UVcurable systems based on the copolymerisation of a typical acrylic resin with low amount of fluorinated monomers (less than 1 per cent w/w) were prepared. The bulk properties of the films were unchanged, while a strong modification of the surface was obtained, depending on the monomer structure, on its concentration and on the type of substrate.

Details

Pigment & Resin Technology, vol. 28 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 January 2013

R.D. Kulkarni, M.E. Chaudhari and S. Mishra

The purpose of this paper is to provide a critical and in‐depth review of the present status and recent developments in synthetic methodologies, reaction engineering, process…

1057

Abstract

Purpose

The purpose of this paper is to provide a critical and in‐depth review of the present status and recent developments in synthetic methodologies, reaction engineering, process design and quality control aspects associated with the manufacture of mono and multifunctional acrylate monomers.

Design/methodology/approach

This paper reviews commercially important UV cure mono and multifunctional acrylate monomers. It covers their synthesis, catalyst, and appropriate solvents for azeotropic removal of byproducts. The detail discussion on catalysis, basis of design of reactors and commercial plant and the process engineering associated with the manufacture has been supported through citation of synthesis of various acrylate monomers. The methodologies adopted for determination of physical, chemical and compositional characterisation of acrylate monomers have been presented. In addition, the guidelines regarding the bulk storage and commercial handling of acrylates have been reviewed.

Findings

The reaction engineering of esterification reaction between acrylic acid and polyol has been worked out to provide the basis for selection of reactors. The reaction has been modeled as a series – parallel complex reaction for providing explanation for generation of various byproducts/adducts and multiple esters.

Practical implications

The detailed discussion on formation, characterisation and treatment of Michael adducts and purification of acrylate monomers will be relevant for new researchers for further development. A review of guidelines on selection of homogenous and heterogeneous catalysts for synthesis of acrylate monomers has been presented.

Originality/value

Since the related literature on acrylate monomers is scarce, scattered and proprietary, the consolidated coverage in one paper will be useful.

Details

Pigment & Resin Technology, vol. 42 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 September 1998

C. Hinczewski, S. Corbel and T. Chartier

Ceramic three‐dimensional parts can be produced by a stereolithography (SL) process using a ceramic suspension containing alumina powder, UV curable monomer, diluent…

2159

Abstract

Ceramic three‐dimensional parts can be produced by a stereolithography (SL) process using a ceramic suspension containing alumina powder, UV curable monomer, diluent, photoinitiator and dispersant. The monomer reacts to UV radiation (argon ionized laser) and is transformed into a solid polymer which is then removed by thermal treatment (debinding). Subsequent sintering of green parts leads to dense ceramic parts. The effect of each component on the rheology of the alumina suspensions has been studied first. Both the addition of dispersant and diluent and the increase in temperature allow a significant decrease of the viscosity of the suspensions. The highly loaded (more than 55 vol. per cent), homogeneous and stable suspensions have a shear thinning behaviour which is favourable for casting the layers. Adequate cured depth (above 200μm) and satisfactory transversal resolution have been obtained and these allow the production of ceramic parts, which demonstrates the feasibility of the process. Sintering at 1,580°C leads to dense ceramic parts with homogeneous microstructure. The process still needs to be optimized to improve even more the mechanical properties.

Details

Rapid Prototyping Journal, vol. 4 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 15 August 2016

Belen Begines, Andrew L. Hook, Morgan R. Alexander, Christopher J. Tuck and Ricky D. Wildman

This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers.

2439

Abstract

Purpose

This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers.

Design/methodology/approach

The first step towards printing was ink development. Inks were characterised to carry out an estimation of their potential printability using the Z parameter to predict stable jetting conditions. Printability conditions were optimised for each ink using a Dimatix DMP-2800, which enabled 3D structures to be fabricated.

Findings

UV photo-initiated polymers, which resist bacterial attachment, were found to be printable using piezo-based inkjet printers. The waveform required for each ink depends on the value of the Z parameter. Once the waveform and the printability parameters were optimised, 3D objects were fabricated.

Research limitations/implications

This methodology has been confirmed as an effective method to 3D print materials that have been demonstrated to be bacteria resistant. However, ink curing depends on modification of some parameters (such as photoinitiator concentration or UV exposure time) which would result in an improvement of the curing process post jetting.

Social implications

The combination of inkjet based 3D printing with new materials resistant to bacterial attachment means the possibility of building customised medical devices with a high level of complexity and bespoke features can be fully realised. The scope and variability of the devices produced will exceed what can be achieved using standard fabrication methodologies and can be applied to reduce the incidence of device associated infections and to address increased morbidity, mortality and health care costs associated with nosocomial infections.

Originality/value

In this paper, the novel use of materials that resist bacterial attachment has been described to build 3D structures using material jetting. Its value lies on the potential impact this methodology could produce in the biomedical device and research fields.

Details

Rapid Prototyping Journal, vol. 22 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 March 2018

Osama Abdel Hakeim, Asmaa Ahmed Arafa, Magdy Kandil Zahran and Laila Abdel Wahab Abdou

The purpose of this paper is to prepare ultra-violet (UV)-curable inkjet inks for textile printing application. The influence of both type and component ratio of monomer/oligomer…

Abstract

Purpose

The purpose of this paper is to prepare ultra-violet (UV)-curable inkjet inks for textile printing application. The influence of both type and component ratio of monomer/oligomer on the quality of the desired viscosity range is studied. Moreover, the effect of pigment/resin ratio on the rheological behaviour of the ink has been studied.

Design/methodology/approach

Aqueous dispersions of nanoscale organic pigments were prepared through ball milling and ultrasonication. The dispersed pigments were encapsulated into UV-curable resin via miniemulsion technique, using different types and component ratios of monomers and oligomers.

Findings

It was found that the monomer/oligomer ratio of 2:3 and the pigment/resin ratio of 2:1 gave the most stable miniemulsion dispersions and provided the most suitable rheological range for inkjet printing inks.

Research limitations/implications

As the rheology of the ink is optimised, most of the problems associated with the jetting process could be avoided.

Practical implications

This method of using UV-curable encapsulated inks eliminates the usage of binders, which are the principal factor for nozzle clogging of the print head. In addition, binders are responsible for the coarse handle of the printed textiles.

Social implications

The UV-curable inks were viewed as a green technology by the US Environmental Protection Agency.

Originality/value

This method is simple and fast and requires low cost. In addition, it could find numerous applications in surface coating.

Details

Pigment & Resin Technology, vol. 47 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 January 2010

O.A. Hakeim, Qinguo Fan and Yong K. Kim

The purpose of this paper is to encapsulate aqueous dispersions of nano‐scale CI Pigment Red 122 prepared through ball milling into UVcurable resins, 1,6 hexanediol diacrylate…

1064

Abstract

Purpose

The purpose of this paper is to encapsulate aqueous dispersions of nano‐scale CI Pigment Red 122 prepared through ball milling into UVcurable resins, 1,6 hexanediol diacrylate (HDDA, monomer), and polyester acrylate (oligomer) using the mini‐emulsion technique.

Design/methodology/approach

The encapsulation of pigment is achieved by mixing a surfactant‐stabilised pigment dispersions and a monomer/oligomer mini‐emulsions and subjecting both to mini‐emulsification conditions. A film of encapsulated pigment mini‐emulsion is finally UV cured using water‐soluble initiator. Efficient encapsulation is proven by ultra‐centrifugal sedimentation, scanning electron microscopy and thermogravimetric analysis (TGA). The stability of pigment dispersions and also the encapsulation process are investigated.

Findings

TGA and ultracentrifuge sedimentation results showed that CI Pigment Red 122 is successfully encapsulated into polyester acrylate/HDDA resins. The oligomer (polyester acrylate) in the presence of organic pigment could stabilise the mini‐emulsion droplets without introducing any other hydrophobes (co‐stabiliser) in the formulation. In addition, the encapsulation percentage and suspension stability of mini‐emulsion are best when the polyester acrylate/HDDA weight ratio is 3:2.

Research limitations/implications

The UVcurable resins used in the present context are 1,6 HDDA and polyester acrylate. Besides, various oligomer/monomer composition types could be used and its impact on encapsulation efficiency could be also studied.

Practical implications

This method of encapsulation is practically effective for modification of organic pigments for use in UVcurable ink‐jet printing inks.

Originality/value

The developed method is novel from a literature point of view and can be of a great benefit to achieve the required properties of pigmented UVcurable system in inkjet printing of textiles. In addition, it could find numerous applications in surface coating.

Details

Pigment & Resin Technology, vol. 39 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 November 2011

Nishant Bhore and Prakash Mahanwar

The purpose of this paper is to synthesise UV curable emulsion latex and to study characteristics and various performance properties such as tackiness, peel adhesion and cohesive…

Abstract

Purpose

The purpose of this paper is to synthesise UV curable emulsion latex and to study characteristics and various performance properties such as tackiness, peel adhesion and cohesive strength for pressure sensitive adhesive (PSA) application after UV curing.

Design/methodology/approach

The two component water‐based ultraviolet (UV) curable acrylate PSAs were synthesised by emulsion copolymerization. The synthesised emulsion samples were characterised and various performance properties such as tackiness, peel adhesion and cohesive strength for PSAs were tested after UV curing.

Findings

The thermal analysis showed the effect of methyl methacrylate (MMA) content on the glass transition temperature of emulsions, which had significant effect on tack. Effects of varying concentration of multifunctional monomer trimethylolpropane triacrylate (TMPTA) and UV exposure time on properties of UV curable PSA were also studied.

Research limitations/implications

The results associated with the UV curable water based PSA has certain advantages, such as low VOC and fast curing rate and with the scope for further research by using the radiations with different intensities or other radiation systems such as electron beam curing.

Practical implications

Practically the UV water based PSAs are already in industrial use for glass lamination, silicon semiconductor dicing, and in medical use for band aids and drug delivery systems and for dental applications for cavity filling.

Originality/value

The water based UV curable PSA synthesised by emulsion polymerization had very good tackiness properties with lower MMA content. It was observed that the lower the concentration of TMPTA, the better the performance properties, such as tack and peel strength. It was also observed that with increasing TMPTA concentration the cohesive strength increased.

Details

Pigment & Resin Technology, vol. 40 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 July 2014

Pooneh Kardar, Morteza Ebrahimi and Saeed Bastani

The purpose of this work was to study the effect of chemical structure of reactive diluents on the curing behaviour and physical–mechanical properties of a titanium dioxide…

Abstract

Purpose

The purpose of this work was to study the effect of chemical structure of reactive diluents on the curing behaviour and physical–mechanical properties of a titanium dioxide pigmented UV-curable epoxy acrylate system.

Design/methodology/approach

Two different tri-functional and two different tetra-functional acrylate monomers were used as reactive diluents in the formulations. The curing behaviour of the formulations was studied by using photo-differential scanning calorimetry analysis. The rate of curing, conversion at the maximum rate and ultimate conversion for different formulations were calculated. In addition, the physical and mechanical characteristics of the cured films, including glass transition temperature and modulus, were measured by using a dynamic mechanical analysis technique.

Findings

The results showed that the ultimate conversion for non-pigmented pentaerythritol triacrylate (PETA) and trimethylol propane triacrylate (TMPTA) formulations were almost similar, but the interference effect of titanium dioxide particles on the curing of the PETA formulations was found to be more considerable in comparison to the TMPTA formulations. The extent of reaction for tetra-functional acrylate monomers was considerably less than those for tri-functional acrylate monomers. The Tg and storage modulus of non-pigmented PETA, TMPTA and pentaerythritol tetraacrylate (PE4TA) formulations were almost the same and higher than that for ditrimethylol propane tetraacrylate (DiTMP4TA) formulations. However, Tg and storage modulus of pigmented tetra-functional acrylate monomer formulations were higher than those for tri-acrylate monomer formulations.

Research limitations/implications

The curing conditions (temperature and UV intensity) can affect the network formation and consequently will affect on the properties of the cured films.

Practical implications

The pigmented UV-curable coatings are interested for many industries such as wood and automotive industries. The reported data can be used by the formulators working in the R&D departments. In addition, the results obtained can be used by the researchers who are active in the field of structure–property relationship for UV-curable coatings.

Social implications

UV-curing systems are considered as one of the most environment-friendly coatings system. Therefore, the developing of its knowledge can help to extend its usage to different applications.

Originality/value

The photopolymerisation of pigmented coatings is a great challenge and is hardly investigated in the literature. Therefore, in this research, the effect of chemical structure and functionality of different multifunctional acrylate monomers on the curing behaviour of pigmented formulations was investigated.

Details

Pigment & Resin Technology, vol. 43 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 October 2004

Andrew Hancock and Long Lin

UV curing technology has a number of unique advantages over the conventional curing technologies. However, until very recently, there had been few successful examples of the…

2022

Abstract

UV curing technology has a number of unique advantages over the conventional curing technologies. However, until very recently, there had been few successful examples of the application of UV curing technology in ink‐jet printing. Several reasons, including the requirement of low viscosity for ink‐jet printing inks, were responsible for the lack of development of UV curable ink‐jet printing inks. This paper describes, in some details, the challenges that a formulator had to face in developing UV curable ink‐jet printing inks, together with information on the status quo of UV curable ink‐jet printing technology.

Details

Pigment & Resin Technology, vol. 33 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 February 2014

Ghodsieh Mashouf, Morteza Ebrahimi and Saeed Bastani

The purpose of this work was to perform a systematic study on the effect of formulation on the physical and mechanical properties of ultaviolet (UV) curable urethane acrylate…

Abstract

Purpose

The purpose of this work was to perform a systematic study on the effect of formulation on the physical and mechanical properties of ultaviolet (UV) curable urethane acrylate resins. In addition, the authors wanted to derive mathematical formula for the prediction of physical and mechanical properties for the aforementioned system.

Design/methodology/approach

The experiments were carried out based on mixture experimental design to determine the effect of different multifunctional acrylates (i.e. 1,6-hexanediol diacrylate (HDDA), tripropylene glycol diacrylate (TPGDA), trimethyolpropane triactylate (TMPTA)) concentration on the physical and mechanical properties of a UV curable polyurethane acrylate system. The urethane oligomer was synthesized and characterized by the research team. Microhardness, adhesion strength and scratch resistance of the cured films were evaluated as the physical and mechanical properties.

Findings

The results revealed that the resin and TMPTA concentrations had the most significant effects on the microhardness property. Adhesion strength of the films showed a linear trend with respect to all variables. Moreover, all components also had a significant and complex influence on the scratch resistance of the cured systems. In addition, mathematical equations proposed by mixture experimental design were derived for all the mentioned properties.

Research limitations/implications

Other multifunctional acrylate monomers (i.e. more than three functional) can be used in the formulations. The kinetics of the curing can affect on the network formation and consequently on the properties of the cured films.

Practical implications

The obtained results can be used by the researchers who are active in the field of structure-property relationship of polymers and surface coatings. The reported data and the mathematical equations can also be used for the formulating of an appropriate formulation based on a specific application.

Originality/value

A systematic and statistical-based approach, i.e. mixture experimental design, was used to evaluate the effect of formulation on some of the properties of a UV curable polyurethane acrylate system. A urethane oligomer and three different multifunctional acrylate monomers as reactive diluents were used in the formulations. Noteworthy to mention that several mathematical models were derived by using analysis of variance for the prediction of the properties studied in this system.

Details

Pigment & Resin Technology, vol. 43 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 144