Search results

1 – 10 of 546
Article
Publication date: 1 February 2002

R. Romagnoli, R.O. Batic, V.F. Vetere, J.D. Sota, I.T. Lucchini and R.O. Carbonari

Hardened cement paste is a heterogeneous system resulting from the grouping of particles, films, microcrystals and other solid structural elements bounded in a porous mass. The…

Abstract

Hardened cement paste is a heterogeneous system resulting from the grouping of particles, films, microcrystals and other solid structural elements bounded in a porous mass. The cement paste microstructure must be understood firstly due to its influence on concrete properties. The behaviour of concrete greatly depends on the conformation of localised special structures rather than on general structures found in the mass cement paste. The objective of this paper was to study the cement paste microstructure, as a function of the water–cement ratio, in order to interpret the variations of the steel–mortar bond strength and the developing of the corrosion process in steel–mortar specimens kept in tap water and 3 percent sodium chloride solutions for 1 year. A description of the steel–mortar interface was also provided.

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 October 2018

Syahrir Ridha, Afif Izwan Abd Hamid, Riau Andriana Setiawan and Ahmad Radzi Shahari

The purpose of this paper is to investigate the resistivity of geopolymer cement with nano-silica additive toward acid exposure for oil well cement application.

Abstract

Purpose

The purpose of this paper is to investigate the resistivity of geopolymer cement with nano-silica additive toward acid exposure for oil well cement application.

Design/methodology/approach

An experimental study was conducted to assess the acid resistance of fly ash-based geopolymer cement with nano-silica additive at a concentration of 0 and 1 wt.% to understand its effect on the strength and microstructural development. Geopolymer cement of Class C fly ash and API Class G cement were used. The alkaline activator was prepared by mixing the proportion of sodium hydroxide (NaOH) solutions of 8 M and sodium silicate (Na2SiO3) using ratio of 1:2.5 by weight. After casting, the specimens were subjected to elevated curing condition at 3,500 psi and 130°C for 24 h. Durability of cement samples was assessed by immersing them in 15 wt.% of hydrochloric acid and 15 wt.% sulfuric acid for a period of 14 days. Evaluation of its resistance in terms of compressive strength and microstructural behavior were carried out by using ELE ADR 3000 and SEM, respectively.

Findings

The paper shows that geopolymer cement with 1 wt.% addition of nano-silica were highly resistant to sulfuric and hydrochloric acid. The strength increase was contributed by the densification of the microstructure with the addition of nano-silica.

Originality/value

This paper investigates the mechanical property and microstructure behavior of emerging geopolymer cement due to hydrochloric and sulfuric acids exposure. The results provide potential application of fly ash-based geopolymer cement as oil well cementing.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 September 2013

Chengqiang Ren, Yi He, Dezhi Zeng and Taihe Shi

The long‐term durability of cement becomes an important challenge in oil and gas wells due to the aggressive acid gas. H2S has been found in more and more wells. The purpose of…

Abstract

Purpose

The long‐term durability of cement becomes an important challenge in oil and gas wells due to the aggressive acid gas. H2S has been found in more and more wells. The purpose of this research was to add polymer latex to the Class G cement in order to promote the H2S corrosion resistance of oilwell cement.

Design/methodology/approach

The water loss and thickening time of cement slurry and compressive strength and gas permeability of bond cement were investigated to determine the cement formulation. The corrosion resistance of the polymer cement was compared to base Class G cement in solution with 1.8 MPa H2S at 120°C.

Findings

The optimum concentration of polystyrene latex was determined as 5 percent. The permeability change, compressive strength loss and corrosion ratio of latex cement were all lower than for the base Class G cement. The electrochemical impedance spectroscopy results and microstructure details confirmed that the latex cement had stronger resistance to the aggressive medium. Thus, latex cement had excellent corrosion resistance to H2S.

Originality/value

The findings of this study can further improve the sulfide resistance of Class G cement. Two roles of the polystyrene latex were observed in the cement, including interstitial in‐filling of the pore structure and packing around hydration products, which are proposed to properly explain the results.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 November 2016

Jiang Hu

The multi-scale numerical simulation method, able to represent the complexity of the random structures and capture phase degradation, is an effective way to investigate the…

Abstract

Purpose

The multi-scale numerical simulation method, able to represent the complexity of the random structures and capture phase degradation, is an effective way to investigate the long-term behavior of concrete in service and bridges the gap between research on the material and on the structural level. However, the combined chemical-physical deterioration mechanisms of concrete remain a challenging task. The purpose of this paper is to investigate the degradation mechanism of concrete at the waterline in cold regions induced by combined calcium leaching and frost damage.

Design/methodology/approach

With the help of the NIST’s three-dimensional (3D) hydration model and the random aggregate model, realistic 3D representative volume elements (RVEs) of concrete at the micro-, the meso-, and the macro-scales can be reconstructed. The boundary problem method is introduced to compute the homogenized mechanical properties for both sound and damaged RVEs. According to the damage characteristics, the staggering method including a random dissolution model and a thermo-mechanical coupling model is developed to simulate the synergy deterioration effects of interacted calcium leaching and frost attacks. The coupled damage procedure for the frost damage process is based on the hydraulic pressure theory and the ice lens growth theory considering the relationship between the frozen temperature and the radius of the capillary pore. Finally, regarding calcium leaching as the leading role in actual engineering, the numerical methodology for combined leaching and frost damage on concrete property is proposed using a successive multi-scale method.

Findings

On the basis of available experimental data, this methodology is employed to explore the deterioration process. The results agree with the experimental ones to some extent, chemical leaching leads to the nucleation of some micro-cracks (i.e. damage), and consequently, to the decrease of the frost resistance.

Originality/value

It is demonstrated that the multi-scale numerical methodology can capture potential aging and deterioration evolution processes, and can give an insight into the macroscopic property degradation of concrete under long-term aggressive conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 October 2021

Vikram Singh Kashyap, Gaurav Sancheti and Jitendra Singh Yadav

The purpose of this study is to perform comprehensive investigation to assess the mechanical properties of nano-modified ternary cement concrete blend. Nano silica (NS) (1%, 2…

Abstract

Purpose

The purpose of this study is to perform comprehensive investigation to assess the mechanical properties of nano-modified ternary cement concrete blend. Nano silica (NS) (1%, 2% and 3%) and waste marble dust powder (MD) (5%, 10% and 15%) was incorporated as a fractional substitution of cement in the concrete matrix.

Design/methodology/approach

In this experimental study, 10 cementitious blends were prepared and tested for compressive strength, flexural strength, splitting tensile strength and static modulus of elasticity. The microstructural characteristics of these blends were also explored using a scanning electron microscope along with energy dispersive spectroscopy and X-ray reflection.

Findings

The results indicate an enhancement in mechanical properties and refinement in pore structure due to improved pozzolanic activities of NS and the filling effect of MD.

Originality/value

To the best of the authors’ knowledge, no study has reported the mechanical and microstructural behavior of concrete containing marble and NS.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 September 1998

R.V. Balendran, H.W. Pang and H.X. Wen

This paper offers a brief review of the present use of scanning electron microscopy (SEM) in concrete studies, from the perspective of how research in materials science is…

2499

Abstract

This paper offers a brief review of the present use of scanning electron microscopy (SEM) in concrete studies, from the perspective of how research in materials science is translated into applications in construction engineering. It describes the scope of present use of the method, and attempts a prospective for the near future in areas where more work could make productive use of the technology. Selected case studies have also been discussed. The electron microscope has been used as a research tool in understanding the root cause of the differing performance of various types of concrete under various conditions, a development tool in making better concrete, and a diagnosis tool on problems like cracking of concrete. The paper also explains how sample preparation affects the type and quality of information which the SEM can produce.

Details

Structural Survey, vol. 16 no. 3
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 2 February 2024

Nilesh R. Parmar, Sanjay R. Salla, Hariom P. Khungar and B. Kondraivendhan

This study aims to characterize the behavior of blended concrete, including metakaolin (MK) and quarry dust (QD), as supplementary cementing materials. The study focuses on…

Abstract

Purpose

This study aims to characterize the behavior of blended concrete, including metakaolin (MK) and quarry dust (QD), as supplementary cementing materials. The study focuses on evaluating the effects of these materials on the fresh and hardened properties of concrete.

Design/methodology/approach

MK, a pozzolanic material, and QD, a fine aggregate by-product, are potentially sustainable alternatives for enhancing concrete performance and reducing environmental impact. The addition of different percentages of MK enhances the pozzolanic reaction, resulting in improved strength development. Furthermore, the optimum dosage of MK, mixed with QD, and mechanical properties like compressive, flexural and split tensile strength of concrete were evaluated to investigate the synergetic effect of MK and quarry dust for M20-grade concrete.

Findings

The results reveal the influence of metakaolin and QD on the overall performance of blended concrete. Cost analysis showed that the optimum mix can reduce the 7%–8% overall cost of the materials for M20-grade concrete. Energy analysis showed that the optimum mix can reduce 7%–8% energy consumption.

Originality/value

The effective utilization is determined with the help of the analytical hierarchy process method to find an optimal solution among the selected criteria. According to the AHP analysis, the optimum content of MK and quarry dust is 12% and 16%, respectively, performing best among all other trial mixes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 January 2009

Tuan Anh Nguyen and Xianming Shi

This research aims to unravel the role of salt contamination and corrosion inhibiting admixtures in the processes of cement hydration and rebar corrosion.

2159

Abstract

Purpose

This research aims to unravel the role of salt contamination and corrosion inhibiting admixtures in the processes of cement hydration and rebar corrosion.

Design/methodology/approach

Mortar samples were prepared with NaCl and one of three corrosion inhibitors, sodium nitrite, disodium β‐glycerophosphate, or N,N′‐dimethylethanolamine, admixed. After 28 days curing, all steel‐mortar samples were ponded with 3 percent NaCl solution and electrochemical impedance spectroscopy (EIS) measurements were conducted periodically during the first 48 days. After 60 days of ponding by 3 percent NaCl solution, field‐emission scanning electron microscopy (FESEM) analyses were conducted on the fracture surface of the steel‐mortar sample.

Findings

The FESEM results revealed that admixing chlorides and inhibitors in fresh mortar changed the morphology and cement hydration product of hardener mortar at the steel‐mortar interface. The EIS data indicated that all inhibitors increased the polarization resistance of steel, implying reduced corrosion rate of the steel over 48‐day exposures to salt ponding. 0.05 M N,N′‐dimethylethanolamine was the most effective corrosion inhibitor, followed by 0.5 M sodium nitrite; whereas 0.05 M disodium β‐glycerophosphate was a slower and less capable corrosion inhibitor. The admixing of inhibitors in fresh mortar consistently increased the capacitance and decreased the electrical resistance of hardened mortar. The effect of sodium nitrite inhibitor on the resistance of steel mortar interfacial film compensated that of corrosive NaCl by participating to the formation of a protective ferric oxide film.

Originality/value

The results reported shed light on the complex role of admixed salt and corrosion inhibitors in cement hydration and their implications on the durability of steel‐reinforced concrete.

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 2016

The Huyen Nguyen, Tuan Anh Nguyen, Van Khu Le, Thi Mai Thanh Dinh, Hoang Thai, Xianming Shi and The Huu Nguyen

This work aims to demonstrate the use of electrochemical chloride extraction (ECE) to remove chloride ions away from the steel rebar in chloride-contaminated mortar and to…

Abstract

Purpose

This work aims to demonstrate the use of electrochemical chloride extraction (ECE) to remove chloride ions away from the steel rebar in chloride-contaminated mortar and to mitigate the corrosion of the embedded steel.

Design/methodology/approach

To simulate salt contamination in concrete, sodium chloride was added at 0.5 per cent by weight of cement in the fresh mortar featuring a water-to-cement ratio of 0.45. The ECE treatments were varied at two electrical current densities (1 and 5 A/m2), using two electrolytes (0.1M NaOH and 0.1M Na3BO3 solutions) and for two periods (2 and 4 weeks). The average free chloride concentration in cement mortars before and after ECE treatment was quantified using a customized chloride sensor, whereas the spatial distribution of relevant elements was obtained using energy-dispersive X-ray spectroscopy. The effect of ECE treatment on the electric resistivity of mortar and the corrosion resistance of steel rebar was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization measurements, respectively.

Findings

The experimental results reveal that the ECE treatment was effective in removing chlorides and in improving electric resistivity and compressive strength of the mortar, when using the sodium borate solution as the electrolyte. In this case, a 4-week ECE treatment at 1 A/m2 decreased the free chloride content in the mortar by 70 per cent, significantly increased the Ca/Si ratio in the mortar near rebar, led to a more refined and less permeable microstructure of the mortar and significantly improved its compressive strength. The ECE treatment was able to halt the chloride-induced corrosion of steel rebar by passivation. A 4-week ECE treatment at 1 A/m2 using sodium hydroxide and sodium borate solutions decreased the corrosion rate of rebar by 36 and 34 per cent, respectively.

Originality/value

This electrochemical rehabilitation of steel-reinforced concrete under chloride-contaminated condition is very effective in prolonging its service life.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 February 2019

Hala Mohamed Elkady, Ahmed M. Yasien, Mohamed S. Elfeky and Mohamed E. Serag

This paper aims to inspect the effect of indirect elevated temperature on the mechanical performance of nano silica concrete (NSC). The effect on both compressive and bond…

Abstract

Purpose

This paper aims to inspect the effect of indirect elevated temperature on the mechanical performance of nano silica concrete (NSC). The effect on both compressive and bond strengths is studied. Pre- and post-exposure to elevated temperature ranges of 200 to 600°C is examined. A range covered by three percentages of 1.5, 3 and 4.5 per cent nano silica (NS) in concrete mixes is tested.

Design/methodology/approach

Pre-exposure mechanical tests (normal conditions – room temperature), using 3 per cent NS in the concrete mix, led to the highest increase in both compressive and bond strengths (43 per cent and 38.5 per cent, respectively), compared to the control mix without NS (based on 28-day results). It is worth noticing that adding NS to the concrete mixes does not have a significant effect on improving early-age strength. Besides, permeability tests are performed on NSC with different NS ratios. NS improved the concrete permeability for all tested percentages of NS. The maximum reduction is accompanied by the maximum percentage used (4.5 per cent NS in the NSC mix), reducing permeability to half the value of the concrete mix without NS. As for post-exposure to elevated-temperature mechanical tests, NSC with 1.5 per cent NS exhibited the lowest loss in strength owing to indirect heat exposure of 600°C; the residual compressive and bond strengths are 73 per cent and 35 per cent, respectively.

Findings

The dispersion technique of NS has a key role in NSC-distinguished mechanical performance with NSC having lower NS percentages. NS significantly improved bond strength. NS has a remarkable effect on elevated temperature endurance. The bond strength of NSC exposed to elevated temperatures suffered faster deterioration than compressive strength of the exposed NSC.

Research limitations/implications

A special scale factor needs to be investigated for the NSC.

Originality/value

Although a lot of effort is placed in evaluating the benefits of using nano materials in structural concrete, this paper presents one of the first outcomes of the thermal effects on concrete mixes with NS as a partial cement replacement.

Details

Journal of Structural Fire Engineering, vol. 10 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 546