Search results

1 – 10 of 95
Article
Publication date: 3 April 2024

Meng Wang, Yongheng Li, Yanyan Shi and Fenglan Huang

With the development of artificial intelligence, proximity sensors show their great potential in intelligent perception. This paper aims to propose a new planar capacitive sensor

Abstract

Purpose

With the development of artificial intelligence, proximity sensors show their great potential in intelligent perception. This paper aims to propose a new planar capacitive sensor for the proximity sensing of a conductor.

Design/methodology/approach

Different from traditional structures, the proposed sensor is characterized by sawtooth-structured electrodes. A series of numerical simulations have been carried out to study the impact of different geometrical parameters such as the width of the main trunk, the width of the sawtooth and the number of sawtooths. In addition, the impact of the lateral offset of the approaching graphite block is investigated.

Findings

It is found that sensitivity is improved with the increase of the main trunk with, sawtooth width and sawtooth number while a larger lateral offset leads to a decrease in sensitivity. The performance of the proposed planar capacitive proximity sensor is also compared with two conventional planar capacitive sensors. The results show that the proposed planar capacitive sensor is obviously more sensitive than the two conventional planar capacitive sensors.

Originality/value

In this paper, a new planar capacitive sensor is proposed for the proximity sensing of a conductor. The results show that the capacitive sensor with the novel structure is obviously more sensitive than the traditional structures in the detection of the proximity conductor.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 September 2023

Yanyan Shi, Fenglan Huang, Meng Wang and Yongheng Li

To solve the problem of low sensitivity of traditional capacitive proximity sensor, this paper aims to propose a novel capacitive sensor for detection of an approaching conductor.

Abstract

Purpose

To solve the problem of low sensitivity of traditional capacitive proximity sensor, this paper aims to propose a novel capacitive sensor for detection of an approaching conductor.

Design/methodology/approach

Five capacitive proximity sensors with different structures are designed and the performance is compared with the traditional capacitive sensor. The impacts of geometrical parameters on the performance of the proposed capacitive sensor are studied. Furthermore, the sensitivity of the proposed capacitive sensor to an approaching conductor with different sizes is discussed. Also, how the designed capacitive sensor is sensitive to the lateral placement of the approaching object is analyzed.

Findings

Several capacitive proximity sensor structures have been designed and analyzed. It is found that the capacitive sensor with the top small ring-bottom large ring structure shows stronger electric field distribution around the top electrode and higher sensitivity to the approaching conductor than other sensors. Through further analysis of the proposed sensor, the results demonstrate that proposed capacitive sensor is effective for proximity object detection.

Originality/value

This paper proposes a novel capacitive proximity sensor with top small ring-bottom large ring structure. Compared with the traditional capacitive sensor, the proposed capacitive sensor is more sensitive to the approaching object. This would be helpful for the accurate detection of the approaching object. Also, the top and bottom electrodes are much smaller.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 January 2018

Wenqing Kan, Ying Huang, Xiao Zeng, Xiaohui Guo and Ping Liu

The purpose of this paper is to present a dual-mode proximity sensor composed of inductive and capacitive sensing modes, which can help the robot distinguish different objects and…

620

Abstract

Purpose

The purpose of this paper is to present a dual-mode proximity sensor composed of inductive and capacitive sensing modes, which can help the robot distinguish different objects and obtain distance information at the same time. A systematic study of sensor response to various objects and the function of cooperation sensing is needed. Furthermore, the application in the field of robotic area needs to be discussed.

Design/methodology/approach

Numerical modeling of each sensing modes and simulations based on finite element analysis method has been carried out to verify the designed dual-mode sensor. A number of objects composed of different materials are used to research the cooperation perception and proximity sensing functions. In addition, the proposed sensor is used on the palm of a mechanical hand as application experiment.

Findings

The characteristics of the sensor are summarized as follows: the sensing range of inductive mode is 0-5.6 mm for detecting a copper block and the perceive range of capacitive mode is 0-5.1 mm for detecting a plastic block. The collaborative perceive tests validated that the non-ferromagnetism metals can be distinguished by inductive mode. Correspondingly, ferromagnetism metals and dielectric objects are differentiated by capacitive mode. Application experiments results reveal that both plastic bottle and steel bottle could be detected and differentiated. The experimental results are in agreement with those of simulations.

Originality value

This paper provides a study of dual-mode proximity sensor in terms of design, experiments and application.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 September 2010

Fahimeh Dehkhoda, Javad Frounchi and Hadi Veladi

The purpose of this paper is to develop a program based on three‐dimensional finite element analysis to model different patterns of capacitive proximity sensors. This program can…

Abstract

Purpose

The purpose of this paper is to develop a program based on three‐dimensional finite element analysis to model different patterns of capacitive proximity sensors. This program can be used as a development tool to optimize the structure and size of a sensor for a desired or for a given sensitivity and linearity range and as a consequence to save sensor design time. A set of experiments have been conducted to test the tool capabilities for designing different sensor structures.

Design/methodology/approach

Finite element analysis in ANSYS software was used to perform electrostatic field simulations and to calculate the capacitance between electrodes of a capacitive proximity sensor when a conducting target is placed in some distance from the sensor plate.

Findings

Several capacitive proximity sensor structures have been designed, analyzed and tested to illustrate the accuracy of the simulated results obtained from the design tool. After design and implementation of a sensor and comparing the extracted and measured capacitance values, it is shown that the finite element analysis is an accurate method to extract fringing capacitance in capacitive proximity sensors in comparison to the analytical tool based on the finite difference method.

Originality/value

This automatic capacitive proximity sensor design tool can optimize a sensor structure with specific shape and size to have more sensitivity or linearity according to the application in use. Moreover, the modeling program can extract characteristics of a sensor with user‐defined parameters.

Details

Sensor Review, vol. 30 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 July 2018

Samuel Zuk, Alena Pietrikova and Igor Vehec

The purpose of this paper is to analyse the possibilities of mechanical switch replacement by capacitive film touch sensor in applications requiring high reliability and short…

Abstract

Purpose

The purpose of this paper is to analyse the possibilities of mechanical switch replacement by capacitive film touch sensor in applications requiring high reliability and short response time. Advantage of replacing mechanical switch by capacitive touch sensor is no mechanical wear and possible implementation of sensor in application where the switch could not be used or where the flexibility of the sensor substrate is required. The aim of this work is to develop a capacitive touch sensor with the advantage of maximum mechanical resistance, short response time and high sensitivity.

Design/methodology/approach

Based on various possible sensors layouts, the authors realized 18 different (14 self-capacitance and four mutual capacitance) topologies of capacitive sensor for touch applications. Three different technologies – PCB, LTCC and polymer technology – were used to characterize sensor’s behaviour. For precise characterization of different layouts realized on various substrates, the authors used integrated circuit FDC2214 capacitance-to-digital converter.

Findings

Sensing range of the capacitive touch (proximity) sensor is affected by the per cent of area covered by the sensor, and it does not depend on topology of sensor. The highest sensing range offers PCB technology. Flexible substrates can be used as proper substituent to rigid PCB.

Originality/value

The novelty of this work lies in finding the touch capacitive sensors that allow shorter switching times compared to standard mechanical switches.

Details

Microelectronics International, vol. 35 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 26 January 2010

Xiaohui Hu and Wuqiang Yang

The purpose of this paper is to present the sensing mechanism, design issues, performance evaluation and applications for planar capacitive sensors. In the context of…

4369

Abstract

Purpose

The purpose of this paper is to present the sensing mechanism, design issues, performance evaluation and applications for planar capacitive sensors. In the context of characterisation and imaging of a dielectric material under test (MUT), a systematic study of sensor modelling, features and design issues is needed. In addition, the influencing factors on sensitivity distribution, and the effect of conductivity on sensor performance need to be further studied for planar capacitive sensors.

Design/methodology/approach

While analytical methods can provide accurate solutions to sensors of simple geometries, numerical modelling is preferred to obtain sensor response to different design parameters and properties of MUT, and to derive the sensitivity distributions of various electrode designs. Several important parameters have been used to evaluate the response of the sensors in different sensing modes. The designs of different planar capacitive sensor arrays are presented and experimentally evaluated.

Findings

The response features and design guidelines for planar capacitive sensors in different sensing modes have been summarised, showing that the sensor in the transmission mode or the single‐electrode mode is suitable for material characterisation and imaging, while the sensor in the shunt mode is suitable for proximity/displacement measurement. The sensitivity distribution of the sensor depends largely on the geometry of the electrodes. Conductivity causes positive changes for the sensor in the transmission and single‐electrode mode, but negative changes for the sensor in the shunt mode. Experimental results confirm that sensing depths of the sensor arrays and the influence of buried conductor on capacitance measurements are in agreement with simulations.

Research limitations/implications

Experimental verification is needed when a sensor is designed.

Originality/value

This paper provides a comprehensive study for planar capacitive sensors in terms of sensor design, evaluation and applications.

Details

Sensor Review, vol. 30 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 April 1988

In the first of a new series, Clive Loughlin takes a close look at proximity sensors.

Abstract

In the first of a new series, Clive Loughlin takes a close look at proximity sensors.

Details

Sensor Review, vol. 8 no. 4
Type: Research Article
ISSN: 0260-2288

Content available
Article
Publication date: 1 September 2002

80

Abstract

Details

Sensor Review, vol. 22 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 1 March 2005

94

Abstract

Details

Sensor Review, vol. 25 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 April 2024

Zhen Li, Jianqing Han, Mingrui Zhao, Yongbo Zhang, Yanzhe Wang, Cong Zhang and Lin Chang

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes…

Abstract

Purpose

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes. Through experimental verification, the effectiveness of the theoretical model in evaluating CI sensors equipped with shielding electrodes has been demonstrated.

Design/methodology/approach

The study begins by incorporating the interelectrode shielding and surrounding shielding electrodes of CI sensors into the theoretical model. A method for deriving the semianalytical model is proposed, using the renormalization group method and physical model. Based on random geometric parameters of CI sensors, capacitance values are calculated using both simulation models and theoretical models. Three different types of CI sensors with varying geometric parameters are designed and manufactured for experimental testing.

Findings

The study’s results indicate that the errors of the semianalytical model for the CI sensor are predominantly below 5%, with all errors falling below 10%. This suggests that the semianalytical model, derived using the renormalization group method, effectively evaluates CI sensors equipped with shielding electrodes. The experimental results demonstrate the efficacy of the theoretical model in accurately predicting the capacitance values of the CI sensors.

Originality/value

The theoretical model of CI sensors is described by incorporating the interelectrode shielding and surrounding shielding electrodes into the model. This comprehensive approach allows for a more accurate evaluation of the detecting capability of CI sensors, as well as optimization of their performance.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 95