Search results

1 – 10 of 102
Article
Publication date: 16 November 2012

Semyon Levitsky, Rudolf Bergman and Jehuda Haddad

The objective of this study is to model the influence of free gas, in the form of size‐distributed fine bubbles, on sound attenuation and dispersion in a thin‐walled elastic…

Abstract

Purpose

The objective of this study is to model the influence of free gas, in the form of size‐distributed fine bubbles, on sound attenuation and dispersion in a thin‐walled elastic cylindrical tube filled with viscoelastic polymeric liquid.

Design/methodology/approach

Sound wave propagation in the system is described within a three‐phase interaction scheme, based on a quasi‐homogeneous approach to liquid‐gas mixture dynamics in the wave. Coupled equations of tube wall deformations and viscoelastic liquid dynamics in the tube are solved using a long‐wave approximation. The dissipative losses, stemming from flow gradients in the wave, as well as from non‐equilibrium bubble‐liquid interaction, are accounted for. The dispersion equation for the waveguide is obtained and studied numerically.

Findings

The results of the study indicate that bubble‐size distribution in viscoelastic liquid has an essential impact on sound propagation in the tube at sufficiently high frequencies. The frequency range in which the mixture heterogeneity influences the acoustic properties of the system is sensitive to both the distribution parameters and the rheological properties of the liquid. As distinct to polydispersity features, the viscoelastic properties of liquid are also relevant in the low‐frequency range, where they lead to an increase of the wave speed and a decrease of its attenuation.

Originality/value

A model of sound wave propagation in a tube filled with a heterogeneous viscoelastic liquid‐bubble mixture is formulated. The study provides a basis for modeling transient processes in tubes filled with polymeric liquids containing free gas, and for acoustic control of certain processes in polymer technologies.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 5 October 2015

Zhiyi Yu, Baoshan Zhu and Shuliang Cao

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was…

2127

Abstract

Purpose

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was carried out within the framework of two-fluid model. The purpose of this paper is to clarify the relative importance of various interphase forces on the mixed transport process, and the findings herein will be a base for the future study on the mechanism of the gas blockage phenomenon, which is the most challenging issue for such pumps.

Design/methodology/approach

Four types of interphase forces, i.e. drag force, lift force, virtual mass force and turbulent dispersion force (TDF) were taken into account. By comparing with the experiment in the respect of the head performance, the effectiveness of the numerical model was validated. In conditions of different inlet gas void fractions, bubble diameters and rotational speeds, the magnitude analyses were made for the interphase forces.

Findings

The results demonstrate that the TDF can be neglected in the running of the multiphase rotodynamic pump; the drag force is dominant in the impeller region and the outlet extended region. The sensitivity analyses of the bubble diameter and the rotational speed were also performed. It is found that larger bubble size is accompanied by smaller predicted drag but larger predicted lift and virtual mass, while the increase of the rotational speed can raise all the interphase forces mentioned above.

Originality/value

This paper has revealed the magnitude information and the relative importance of the interphase forces in a multiphase rotodynamic pump.

Details

Engineering Computations, vol. 32 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 November 2018

Lei Shao, Shiyu Feng, Chaoyue Li, Weihua Liu and Xuying Huang

This paper aims to improve the previous fuel scrubbing model and find out the relationship between bubble diameter and scrubbing efficiency (ƞ).

Abstract

Purpose

This paper aims to improve the previous fuel scrubbing model and find out the relationship between bubble diameter and scrubbing efficiency (ƞ).

Design/methodology/approach

A fuel tank scrubbing test bench was established to verify the accuracy of this model. Ullage and dissolved oxygen concentration were measured, and images of bubble size and distribution were collected and analyzed using image analysis software.

Findings

The bubble diameter has a great influence on ullage and dissolved oxygen concentration during the fuel scrubbing process. The scrubbing efficiency (ƞ) has an exponential relationship with bubble diameter and decreases rapidly as the bubble diameter increases.

Practical implications

The variation of the ullage and dissolved oxygen concentration predicted by this model is more accurate than that of the previous model. In addition, the study of bubble size can provide a guidance for the design of fuel scrubber.

Originality/value

This study not only improves the previous fuel scrubbing model but also develops a method to calculate scrubbing efficiency (ƞ) based on bubble diameter. In addition, a series of tests and analyses were conducted, including numerical calculation, experiment and image analysis.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 October 2017

Sushovan Chatterjee

The purpose of this study is analysis on fluid flow characteristics inside a modified designed spiral bubble column photo-bioreactor. Available fluid dynamic simulation of bubble…

Abstract

Purpose

The purpose of this study is analysis on fluid flow characteristics inside a modified designed spiral bubble column photo-bioreactor. Available fluid dynamic simulation of bubble column reactor (BCR) (which is well-known conventional photobioreactor) had shown significance contribution over the past two decades, where the fluid dynamics of the culture medium and mixing will influence the average irradiance and the light regimen to which the cells are exposed. This enhances the growth. To develop this, and also to cut down the cost parameter involving the production of biodiesel from algae, the growth rate of algae has to be enhanced.

Design/methodology/approach

Some design modification through a staggered spiral-path inside the bubble column design had been proposed and comparative simulation of the modified design has been reported. Three-dimensional simulations of gas–liquid flow both in the BCR and spiral path column reactor have been carried out using the Euler–Euler approach. Various graphs are plotted, and from comparing, it has been seen that the proposed reactor will enhance better mixing rate, which could help the growth rate in microalgae in the present proposed model. In this paper, an earnest attempt had made to carry out computational simulation of conventional BCR and designed reactor used for cultivation of microalgae which had analyzed using commercial code ANSYS 14.

Findings

From this work, it was observed that the average turbulence kinetic energy fluctuates more in designed reactor over the conventional photo bioreactor, which will in turn increase diffusivity and enhance transfer of mass, momentum and energy. The results provide comprehensive information concerning effect of fluid flow characteristics inside a modified designed spiral bubble-column photo-bioreactor.

Originality/value

Some of our earlier published results (www.scientific.net/AMM.592-594.2427) are also referred in this paper. This work had been performed under the financial aid from RPS project (no. 8,023/RID/RPS/27/11/12), sponsored by All India Council for Technical Education.

Details

World Journal of Engineering, vol. 14 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 April 2010

R. Elshereef, J. Vlachopoulos and A. Elkamel

The main purpose of this paper is to present and compare two different models for bubble growth and foam formation and to conduct a thorough assessment in terms of their numerical…

Abstract

Purpose

The main purpose of this paper is to present and compare two different models for bubble growth and foam formation and to conduct a thorough assessment in terms of their numerical implementation and prediction accuracy.

Design/methodology/approach

The two models are assessed and validated against experimental measurements. The first model is known as a single bubble growth model and treats the foaming process as a single bubble growing in a large pool with enough gas available for growth, while the second model (cell model) takes into account the finiteness of gas supply availability as well as the effects of surrounding bubbles. The models are based on the application of the conservation of continuity and momentum principles and on constitutive equations to represent the viscosity of the melt. The models are numerically implemented using a finite difference scheme and their predictions are compared against experimental measurements.

Findings

The results demonstrate that the single bubble model predicts an infinite bubble growth with time due to the assumption of unlimited supply of the blowing agent. Meanwhile the cell model gives an equilibrium bubble size because it accounts for gas depletion. From this work, it was concluded that the cell model is the best model that adequately describes experimental data.

Practical implications

The problem of bubble growth and foam formation is of great importance in the process industry as it plays a key role in diverse technological fields such as the production of foamed plastics.

Originality/value

The findings here are important for the appropriate modeling of bubble growth and foam formation and for scheduling and optimizing the process. A simple model will suffice for the early stage of the process while a cell model is more appropriate for the entire duration of the process.

Details

Engineering Computations, vol. 27 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 June 2016

Chiew Loon Goh, Ruzairi Abdul Rahim and Mohd Hafiz Fazalul Rahiman

The purpose of this paper is to conduct a review of types of tomographic systems that have been widely researched within the past 10 years. Decades of research on non-invasively…

496

Abstract

Purpose

The purpose of this paper is to conduct a review of types of tomographic systems that have been widely researched within the past 10 years. Decades of research on non-invasively and non-intrusively visualizing and monitoring gas-liquid multi-phase flow in process plants in making sure that the industrial system has high quality control. Process tomography is a developing measurement technology for industrial flow visualization.

Design/methodology/approach

A review of types of tomographic systems that have been widely researched especially in the application of gas-liquid flow within the past 10 years was conducted. The sensor system operating fundamentals and assessment of each tomography technology are discussed and explained in detail.

Findings

Potential future research on gas-liquid flow in a conducting vessel using ultrasonic tomography sensor system is addressed.

Originality/value

The authors would like to undertake that the above-mentioned manuscript is original, has not been published elsewhere, accepted for publication elsewhere or under editorial review for publication elsewhere and that my Institute’s Universiti Teknologi Malaysia representative is fully aware of this submission.

Details

Sensor Review, vol. 36 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 October 2018

Ming Liu, Shan Cao and Shuliang Cao

The modeling of interphase forces plays a significant role in the numerical simulation of gas–liquid flow in a rotodynamic multiphase pump, which deserves detailed study.

181

Abstract

Purpose

The modeling of interphase forces plays a significant role in the numerical simulation of gas–liquid flow in a rotodynamic multiphase pump, which deserves detailed study.

Design/methodology/approach

Numerical analysis is conducted to estimate the influence of interphase forces, including drag force, lift force, virtual mass force, wall lubrication force and turbulent dispersion force.

Findings

The results show that the magnitude of the interphase forces can be sorted by: drag force > virtual mass force > lift force > turbulent dispersion force > wall lubrication force. The relations between interphase forces and velocity difference of gas–liquid flow and also the interphase forces and gas volume fraction are revealed. The distribution characteristics of interphase forces in the passages from impeller inlet to diffuser outlet are illustrated and analyzed. According to the results, apart from the drag force, the virtual mass force, lift force and turbulent dispersion force are required, whereas wall lubrication force can be neglected for numerical simulation of gas–liquid flow in a rotodynamic multiphase pump. Compared with the conventional numerical method which considers drag force only, the relative errors of predicted pressure rise and efficiency based on the proposed numerical method in account of four major forces can be reduced by 4.95 per cent and 3.00 per cent, respectively.

Originality value

The numerical analysis reveals the magnitude and distribution of interphase forces inside multiphase pump, which is meaningful for the simulation and design of multiphase pump.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1963

A.T.J. HAYWARD

The National Engineering Laboratory is one of the larger stations of the British Government's Department of Scientific and Industrial Research. Current programmes include…

Abstract

The National Engineering Laboratory is one of the larger stations of the British Government's Department of Scientific and Industrial Research. Current programmes include theoretical and experimental studies of non‐Newtonian lubricants, the development of new methods of measuring the compressibility of hydraulic fluids, research into the behaviour of oils under hydrostatic tension, and investigations of various aspects of the phenomenon of aeration in hydraulic fluids. The Laboratory's facilities for carrying out sponsored research and testing in this field are briefly described.

Details

Industrial Lubrication and Tribology, vol. 15 no. 3
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 28 October 2013

Xiang Wang, Guangya Zhu and Ke Li

The present study aims to resolve the adjustment problem of cavitation bubble number density in simulations of the cavitating flows within the diesel injection nozzle holes using…

Abstract

Purpose

The present study aims to resolve the adjustment problem of cavitation bubble number density in simulations of the cavitating flows within the diesel injection nozzle holes using a two-fluid cavitation model.

Design/methodology/approach

The basic rule that determines the variations of cavitation bubble number density has been checked through the scaling analysis of a two-fluid model under the assumption of hydrodynamic similarity of the cavitating flows. Moreover, a phenomenological model for the number density of cavitation bubbles that takes the hydrodynamic effect into account has been developed through the combined analysis of cavitation bubble dynamics and internal flow characteristics of diesel injection nozzle holes. This new model has also been validated by the discharge coefficient measures in a wide range of injection conditions.

Findings

The values of cavitation bubble number density must rationally match changes both in liquid quality effect and in hydrodynamic effect corresponding to different cavitating flows. The validation results show that the two-fluid cavitation model together with this new cavitation bubble number density model predicts well both the cavitation content inside the diesel nozzle hole and the relationship between discharge coefficient and cavitation number, and the new cavitation bubble number density model has the potential to further expand the application range of the two-fluid cavitation model.

Originality/value

This study provides insight into hydrodynamic effect corresponding to cavitating flows inside diesel nozzle holes and presents an idea to model the cavitation bubble number density phenomenologically. The model idea and the developed model are useful to researchers and engineers in the area of nozzle internal flow and cavitating flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 February 2019

Van Luc Nguyen, Tomohiro Degawa and Tomomi Uchiyama

This study aims to provide discussions of the numerical method and the bubbly flow characteristics of an annular bubble plume.

Abstract

Purpose

This study aims to provide discussions of the numerical method and the bubbly flow characteristics of an annular bubble plume.

Design/methodology/approach

The bubbles, released from the annulus located at the bottom of the domain, rise owing to buoyant force. These released bubbles have diameters of 0.15–0.25 mm and satisfy the bubble flow rate of 4.1 mm3/s. The evolution of the three-dimensional annular bubble plume is numerically simulated using the semi-Lagrangian–Lagrangian (semi-LL) approach. The approach is composed of a vortex-in-cell method for the liquid phase and a Lagrangian description of the gas phase.

Findings

First, a new phenomenon of fluid dynamics was discovered. The bubbly flow enters a transition state with the meandering motion of the bubble plume after the early stable stage. A vortex structure in the form of vortex rings is formed because of the inhomogeneous bubble distribution and the fluid-surface effects. The vortex structure of the flow deforms as three-dimensionality appears in the flow before the flow fully develops. Second, the superior abilities of the semi-LL approach to analyze the vortex structure of the flow and supply physical details of bubble dynamics were demonstrated in this investigation.

Originality/value

The semi-LL approach is applied to the simulation of the gas–liquid two-phase flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 102