Search results

1 – 10 of 162
Open Access
Article
Publication date: 5 October 2015

Zhiyi Yu, Baoshan Zhu and Shuliang Cao

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was…

2127

Abstract

Purpose

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was carried out within the framework of two-fluid model. The purpose of this paper is to clarify the relative importance of various interphase forces on the mixed transport process, and the findings herein will be a base for the future study on the mechanism of the gas blockage phenomenon, which is the most challenging issue for such pumps.

Design/methodology/approach

Four types of interphase forces, i.e. drag force, lift force, virtual mass force and turbulent dispersion force (TDF) were taken into account. By comparing with the experiment in the respect of the head performance, the effectiveness of the numerical model was validated. In conditions of different inlet gas void fractions, bubble diameters and rotational speeds, the magnitude analyses were made for the interphase forces.

Findings

The results demonstrate that the TDF can be neglected in the running of the multiphase rotodynamic pump; the drag force is dominant in the impeller region and the outlet extended region. The sensitivity analyses of the bubble diameter and the rotational speed were also performed. It is found that larger bubble size is accompanied by smaller predicted drag but larger predicted lift and virtual mass, while the increase of the rotational speed can raise all the interphase forces mentioned above.

Originality/value

This paper has revealed the magnitude information and the relative importance of the interphase forces in a multiphase rotodynamic pump.

Details

Engineering Computations, vol. 32 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 March 2021

Z.B. Xing, Xingchao Han, Hanbing Ke, Q.G. Zhang, Zhiping Zhang, Huijin Xu and Fuqiang Wang

A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow…

Abstract

Purpose

A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow and thermal transport of nanofluids in porous media, the purpose of this paper is to explore the inter-phase coupling numerical methods.

Design/methodology/approach

Based on the lattice Boltzmann (LB) method, this study combines the convective flow, non-equilibrium thermal transport and phase interactions of nanofluids in porous matrix and proposes a new multi-phase LB model. The micro-scale momentum and heat interactions are especially analyzed for nanoparticles, base fluid and solid matrix. A set of three-phase LB equations for the flow/thermal coupling of base fluid, nanoparticles and solid matrix is established.

Findings

Distributions of nanoparticles, velocities for nanoparticles and the base fluid, temperatures for three phases and interaction forces are analyzed in detail. Influences of parameters on the nanofluid convection in the porous matrix are examined. Thermal resistance of nanofluid convective transport in porous structures are comprehensively discussed with the models of multi-phases. Results show that the Rayleigh number and the Darcy number have significant influences on the convective characteristics. The result with the three-phase model is mildly larger than that with the local thermal non-equilibrium model.

Originality/value

This paper first creates the multi-phase theoretical model for the complex coupling process of nanofluids in porous structures, which is useful for researchers and technicians in fields of thermal science and computational fluid dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 October 2018

Ming Liu, Shan Cao and Shuliang Cao

The modeling of interphase forces plays a significant role in the numerical simulation of gas–liquid flow in a rotodynamic multiphase pump, which deserves detailed study.

181

Abstract

Purpose

The modeling of interphase forces plays a significant role in the numerical simulation of gas–liquid flow in a rotodynamic multiphase pump, which deserves detailed study.

Design/methodology/approach

Numerical analysis is conducted to estimate the influence of interphase forces, including drag force, lift force, virtual mass force, wall lubrication force and turbulent dispersion force.

Findings

The results show that the magnitude of the interphase forces can be sorted by: drag force > virtual mass force > lift force > turbulent dispersion force > wall lubrication force. The relations between interphase forces and velocity difference of gas–liquid flow and also the interphase forces and gas volume fraction are revealed. The distribution characteristics of interphase forces in the passages from impeller inlet to diffuser outlet are illustrated and analyzed. According to the results, apart from the drag force, the virtual mass force, lift force and turbulent dispersion force are required, whereas wall lubrication force can be neglected for numerical simulation of gas–liquid flow in a rotodynamic multiphase pump. Compared with the conventional numerical method which considers drag force only, the relative errors of predicted pressure rise and efficiency based on the proposed numerical method in account of four major forces can be reduced by 4.95 per cent and 3.00 per cent, respectively.

Originality value

The numerical analysis reveals the magnitude and distribution of interphase forces inside multiphase pump, which is meaningful for the simulation and design of multiphase pump.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 June 2019

P. Utkin

This paper aims to clarify some aspects of the application of the Godunov method for the Baer–Nunziato equations solution on the example of the problem of shock wave – dense…

Abstract

Purpose

This paper aims to clarify some aspects of the application of the Godunov method for the Baer–Nunziato equations solution on the example of the problem of shock wave – dense particles cloud interaction.

Design/methodology/approach

The statement of the problem corresponds to the natural experiment. Mathematical model is based on the Baer–Nunziato system of equations with algebraic right-hand side source terms that takes into account the interphase friction force. Two numerical approaches are used: Harten-Lax-van Leer method and Godunov method.

Findings

For the robust simulation using Godunov method, the application of the pressure relaxation procedure is proposed. The comparative analysis of the simulation results using two methods is carried out. The Godunov method provides significantly smaller numerical diffusion of the solid phase volume fraction in the cloud that leads to the much better agreement of the pressure curves on transducers and the dynamics of the cloud motion with the experimental data.

Originality/value

Godunov method for the Baer–Nunziato equations is applied for the simulation of the natural experiment on the shock wave particles cloud interaction. Up to now, the examples of the application of the Godunov method for the Baer–Nunziato equations to the investigation of the practical problems have been limited by the works of the authors of the method and the field of detonation in the heterogeneous explosives. For the robust simulations in the presence of interphase boundaries, it is proposed to use the Godunov method together with the pressure relaxation procedure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 March 2015

Qiao Luo and Xiaobing Zhang

In engineering applications, gas-solid two-phase reaction flow with multi-moving boundaries is a common phenomenon. The launch process of multiple projectiles is a typical…

Abstract

Purpose

In engineering applications, gas-solid two-phase reaction flow with multi-moving boundaries is a common phenomenon. The launch process of multiple projectiles is a typical example. The flow of adjacent powder chambers is coupled by projectile’s motion. The purpose of this paper is to study this flow by numerical simulation.

Design/methodology/approach

A one-dimensional two-phase reaction flow model and MacCormack difference scheme are implemented in a computational code, and the code is used to simulate the launch process of a system of multiple projectiles. For different launching rates and loading conditions, the simulated results of the launch process of three projectiles are obtained and discussed.

Findings

At low launching rates, projectiles fired earlier in the series have little effect on the launch processes of projectiles fired later. However, at higher launching rates, the projectiles fired first have a great influence on the launch processes of projectiles fired later. As the launching rate increases, the maximum breech pressure for the later projectiles increases. Although the muzzle velocities increase initially, they reach a maximum at some launching rate, and then decrease rapidly. The muzzle velocities and maximum breech pressures of the three projectiles have an approximate linear relationship with the charge weight, propellant web size and chamber volume.

Originality/value

This paper presents a prediction tool to understand the physical phenomenon of the gas-solid two-phase reaction flow with multi-moving boundaries, and can be used as a research tool for future interior ballistics studies of launch system of multiple projectiles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2018

Jinya Zhang, Yongjiang Li, K. Vafai and Yongxue Zhang

Numerical simulations of a multistage multiphase pump at different operating conditions were performed to study the variational characteristics of flow parameters for each…

229

Abstract

Purpose

Numerical simulations of a multistage multiphase pump at different operating conditions were performed to study the variational characteristics of flow parameters for each impeller. The simulation results were verified against the experimented results. Because of the compressibility of the gas, inlet volume flow rate qi and inlet flow angle ßi for each impeller decrease gradually from the first to the last stage. The volume flow rate at the entrance of the pump q, rotational speed n and inlet gas volume fraction (IGVF) affect the characteristics of qi and ßi.

Design/methodology/approach

The hydraulic design features of the impellers in the multistage multiphase pump are obtained based on the flow parameter characteristics of the pump. Using the hydraulic setup features, stage-by-stage design of the multistage multiphase pump for a nominal IGVF has been conducted.

Findings

The numerical simulation results show that hydraulic loss in impellers of the optimized pump is substantially reduced. Furthermore, the hydraulic efficiency of the optimized pump increases by 3.29 per cent, which verifies the validation of the method of stage-by-stage design.

Practical implications

Under various operating conditions, qi and ßi decrease gradually from the first to the fifth stage because of the compressibility of the gas. For this characteristic, the fluid behavior varies at each stage of the pump. As such, it is necessary to design impellers stage by stage in a multistage rotodynamic multiphase pump.

Social implications

These results will have substantial effect on various practical operations in the industry. For example, in the development of subsea oilfields, the conventional conveying equipment, which contains liquid-phase pumps, compressors and separators, is replaced by multiphase pumps. Multiphase pumps directly transport the mixture of oil, gas and water from subsea oilwells through a single pipeline, which can simplify equipment usage, decrease backpressure of the wellhead and save capital costs.

Originality/value

Characteristics of a multistage multiphase pump under different operating conditions were investigated along with features of the inlet flow parameters for every impeller at each compression stage. Our simulation results have established that the change in the inlet flow parameters of every impeller is mainly because of the compressibility of the gas. The operational parameters q, n and IGVF all affect the characteristics of qi and ßi. However, the IGVF has the most prominent effect. Lower values of IGVF have an insignificant effect on the gas compressibility. Higher values of IGVF have a significant effect on the gas compressibility. All these characteristics affect the hydraulic design of the impellers for a multistage multiphase pump. In addition, the machining precision should also be considered. Considering all these factors, when IGVF is lower than 10 per cent, all the impellers in the pump can be designed uniformly. When IGVF varies from 10 to 30 per cent, the first two stages should be designed separately, and the latter stages are uniform starting with the second stage. When IGVF varies from 30 to 50 per cent, the first three stages should be designed separately, and the latter stages are going to be similar to the third stage. An additional increase in IGVF results in degeneration of the differential pressure of the pump, which will reduce the compressibility of the gas. As such, it can be deduced that only the first three stages should be designed separately, and the latter stages will be similar to the third stage. In addition, for the pump working under a lower volume flow rate than 25 m3/h, the first three stages should be designed individually while keeping the geometrical structure of the subsequent stages the same as the third stage.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 July 2018

Rohana Abdul Hamid, Roslinda Nazar and Ioan Pop

This present aims to present the numerical study of the unsteady stretching/shrinking flow of a fluid-particle suspension in the presence of the constant suction and dust particle…

Abstract

Purpose

This present aims to present the numerical study of the unsteady stretching/shrinking flow of a fluid-particle suspension in the presence of the constant suction and dust particle slip on the surface.

Design/methodology/approach

The governing partial differential equations for the two phases flows of the fluid and the dust particles are reduced to the pertinent ordinary differential equations using a similarity transformation. The numerical results are obtained using the bvp4c function in the Matlab software.

Findings

The results revealed that in the decelerating shrinking flow, the wall skin friction is higher in the dusty fluid when compared to the clean fluid. In addition, the effect of the fluid-particle interaction parameter to the fluid-phase can be seen more clearly in the shrinking flow. Other non-dimensional physical parameters such as the unsteadiness parameter, the mass suction parameter, the viscosity ratio parameter, the particle slip parameter and the particle loading parameter are also considered and presented in figures. Further, the second solution is discovered in this problem and the solution expanded with higher unsteadiness and suction values. Hence, the stability analysis is performed, and it is confirmed that the second solution is unstable.

Practical implications

In practice, the flow conditions are commonly varying with time; thus, the study of the unsteady flow is very crucial and useful. The problem of unsteady flow of a dusty fluid has a wide range of possible applications such as in the centrifugal separation of particles, sedimentation and underground disposable of radioactive waste materials.

Originality/value

Even though the problem of dusty fluid has been broadly investigated, limited discoveries can be found over an unsteady shrinking flow. Indeed, this paper managed to obtain the second (dual) solutions, and stability analysis is performed. Furthermore, the authors also considered the artificial particle-phase viscosity, which is an important term to study the particle-particle and particle-wall interactions. With the addition of this term, the effects of the particle slip and suction parameters can be investigated. Very few studies in the dusty fluid embedded this parameter in their problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2017

Qiao Luo and Xiaobing Zhang

The numerical simulation of the serial launch process of multiple projectiles is an important engineering problem. However, the projectiles’ motion law is hard to obtain…

Abstract

Purpose

The numerical simulation of the serial launch process of multiple projectiles is an important engineering problem. However, the projectiles’ motion law is hard to obtain completely only by interior ballistic model. The muzzle flow field affects the projectiles’ velocities when the projectiles pass through it. Also, the propellant gas from previous projectiles may decelerate the later projectiles. Therefore, the aftereffect period should be simulated together with the interior ballistic process of multiple projectiles when researching the serial launch process for accurate motion law of the projectiles.

Design/methodology/approach

The computational fluid dynamics (CFD) software is used to simulate the muzzle flow field. A one-dimensional two-phase reaction flow model is implemented in a computational code for the numerical simulation of gas-solid two-phase reaction flow, during the serial launch process. The computational code is coupled with CFD software by a user-defined function.

Findings

Compared with the first projectile, the formation process of the shock bottle of the second projectile is different. After the projectile head flies out of the muzzle, the projectile head pressure decreases rapidly, but then, it is not always equal to 0.1 MPa. After the projectiles leave the muzzle, the velocity increments of each projectile are mainly determined by muzzle pressure.

Originality/value

This paper presents a prediction tool to understand the projectiles’ motion law during the serial launch process of the multiple projectiles considering aftereffect period, and can be used as a research tool for future ballistic studies of a serial launch system of multiple projectiles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 January 2022

Dan Wang, Yabing Wei, Kang Pan, Jiagang Li and Miaoxin Jiao

This paper aims to investigate the effects of different volume fractions of Al2O3-water nanofluid on flow and heat transfer under chaotic convection conditions in an L-shaped…

Abstract

Purpose

This paper aims to investigate the effects of different volume fractions of Al2O3-water nanofluid on flow and heat transfer under chaotic convection conditions in an L-shaped channel, comparing the difference of numerical simulation results between single-phase and Eulerian–Lagrangian models.

Design/methodology/approach

The correctness and accuracy of the two calculation models were verified by comparing with the experimental values in literature. An experimental model of the L-shaped channel was processed, and the laser Doppler velocimeter was used to measure the velocities of special positions in the channel. The simulated values were compared with the experimental results, and the correctness and accuracy of the simulation method were verified.

Findings

The calculated results using the two models are basically consistent. Under the condition of Reynolds number is 500, when the volume fractions of nanofluid range from 1% to 4%, the heat transfer coefficients simulated by single-phase model are 1.49%–25.80% higher than that of pure water, and simulated by Eulerian–Lagrangian model are 3.19%–27.48% higher than that of pure water. Meanwhile, the friction coefficients are barely affected. Besides, there are obvious secondary flow caused by lateral oscillations on the cross sections, and the appearance of secondary flow makes the temperature distributions uniform on the cross section and takes more heat away, thus the heat transfer performance is enhanced.

Originality/value

The originality of this work is to reveal the differences between single-phase and two-phase numerical simulations under different flow states. The combination of chaotic convection and nanofluid indicates the direction for further improving the heat transfer threshold.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 August 2021

Iskandar Waini, Anuar Ishak, Ioan Pop and Roslinda Nazar

This paper aims to examine the Cu-Al2O3/water hybrid nanofluid flow over a shrinking sheet in the presence of the magnetic field and dust particles.

110

Abstract

Purpose

This paper aims to examine the Cu-Al2O3/water hybrid nanofluid flow over a shrinking sheet in the presence of the magnetic field and dust particles.

Design/methodology/approach

The governing partial differential equations for the two-phase flow of the hybrid nanofluid and the dust particles are reduced to ordinary differential equations using a similarity transformation. Then, these equations are solved using bvp4c in MATLAB software. The bvp4c solver is a finite-difference code that implements the three-stage Lobatto IIIa formula. The numerical results are gained for several values of the physical parameters. The effects of these parameters on the flow and the thermal characteristics of the hybrid nanofluid and the dust particles are analyzed and discussed. Later, the temporal stability analysis is used to determine the stability of the dual solutions obtained as time evolves.

Findings

The outcome shows that the flow is unlikely to exist unless satisfactory suction strength is imposed on the shrinking sheet. Besides, the heat transfer rate on the shrinking sheet decreases with the increase of . However, the increase in and lead to enhance the heat transfer rate. Two solutions are found, where the domain of the solutions is expanded with the rising of, and. Consequently, the boundary layer separation on the surface is delayed in the presence of these parameters. Implementing the temporal stability analysis, it is found that only one of the solutions is stable as time evolves.

Originality/value

The dusty fluid problem has been widely studied for the flow over a stretching sheet, but only limited findings can be found for the shrinking counterpart. Therefore, this study considers the problem of the dusty fluid flow over a shrinking sheet containing Cu-Al2O3/water hybrid nanofluid with the effect of the magnetic field. In fact, this is the first study to discover the dual solutions of the dusty hybrid nanofluid flow over a shrinking sheet. Also, further analysis shows that only one of the solutions is stable as time evolves.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 162