Search results

1 – 10 of 127
Article
Publication date: 19 August 2019

Jing Zhang, Wenwen Kang and Lingyu Yang

Boundary layer ingestion (BLI) is one of the probable noteworthy features of distributed propulsion configuration (DPC). Because of BLI, strong coupling effects are generated…

Abstract

Purpose

Boundary layer ingestion (BLI) is one of the probable noteworthy features of distributed propulsion configuration (DPC). Because of BLI, strong coupling effects are generated between the aerodynamics and propulsion system of aircraft, leading to the specific lift and drag aerodynamic characteristics. This paper aims to propose a model-based comprehensive analysis method to investigate this unique aerodynamic.

Design/methodology/approach

To investigate this unique aerodynamics, a model-based comprehensive analysis method is proposed. This method uses a detailed mathematical model of the distributed propulsion system to provide the essential boundary conditions and guarantee the accuracy of calculation results. Then a synthetic three-dimensional computational model is developed to analyze the effects of BLI on the lift and drag aerodynamic characteristics.

Findings

Subsequently, detailed computational analyses are conducted at different flight states, and the regularities under various flight altitudes and velocities are revealed. Computational results demonstrate that BLI can improve the lift to drag ratio evidently and enable a great performance potentiality.

Practical implications

The general analysis method and useful regularities have reference value to DPC aircraft and other similar aircrafts.

Originality/value

This paper proposed a DPS model-based comprehensive analysis method of BLI benefit on aerodynamics for DPC aircraft, and the unique aerodynamics of this new configuration under various flight altitudes and velocities was revealed.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 December 2022

Jesús Matesanz-García, Tommaso Piovesan and David G. MacManus

Novel aircraft propulsion configurations require a greater integration of the propulsive system with the airframe. As a consequence of the closer integration of the propulsive…

Abstract

Purpose

Novel aircraft propulsion configurations require a greater integration of the propulsive system with the airframe. As a consequence of the closer integration of the propulsive system, higher levels of flow distortion at the fan face are expected. This distortion will propagate through the fan and penalize the system performance. This will also modify the exhaust design requirements. This paper aims to propose a methodology for the aerodynamic optimization of the exhaust for novel embedded propulsive systems. To model the distortion transfer, a low order throughflow fan model is included.

Design/methodology/approach

As the case study a 2D axisymmetric aft-mounted annular boundary layer ingestion (BLI) propulsor is used. An automated computational fluid dynamics approach is applied with a parametric definition of the design space. A throughflow body force model for the fan is implemented and validated for 2D axisymmetric and 3D flows. A multi-objective optimization based on evolutionary algorithms is used for the exhaust design.

Findings

By the application of the optimization methodology, a maximum benefit of approximately 0.32% of the total aircraft required thrust was observed by the application of compact exhaust designs. Furthermore, for the embedded system, it is observed that the design of the compact exhaust and the nacelle afterbody have a considerable impact on the aerodynamic performance.

Originality/value

This paper presents a novel approach for the exhaust design of embedded propulsive systems in novel aircraft configurations. To the best of the authors’ knowledge, this is the first detailed optimization of the exhaust system on an annular aft-mounted BLI propulsor.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2023

Kaikai Shi, Hanan Lu, Xizhen Song, Tianyu Pan, Zhe Yang, Jian Zhang and Qiushi Li

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn…

Abstract

Purpose

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn impacting the potential fuel burn reduction of the aircraft. Usually, in the preliminary design stage of a BLI propulsion system, it is essential to assess the impact of fuselage boundary layer fluids on fan aerodynamic performances under various flight conditions. However, the hub region flow loss is one of the major loss sources in a fan and would greatly influence the fan performances. Moreover, the inflow distortion also results in a complex and highly nonlinear mapping relation between loss and local physical parameters. It will diminish the prediction accuracy of the commonly used low-fidelity computational approaches which often incorporate traditional physics-based loss models, reducing the reliability of these approaches in evaluating fan performances. Meanwhile, the high-fidelity full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) approach, even though it can give rather accurate loss predictions, is extremely time-consuming. This study aims to develop a fast and accurate hub loss prediction method for a BLI fan under distorted inflow conditions.

Design/methodology/approach

This paper develops a data-driven hub loss prediction method for a BLI fan under distorted inflows. To improve the prediction accuracy and applicability, physical understandings of hub flow features are integrated into the modeling process. Then, the key physical parameters related to flow loss are screened by conducting a sensitivity analysis of influencing parameters. Next, a quasi-steady assumption of flow is made to generate a training sample database, reducing the computational time by acquiring one single sample from the highly time-consuming full-annulus URANS approach to a cost-efficient single-blade-passage approach. Finally, a radial basis function neural network is used to establish a surrogate model that correlates the input parameters and the output loss.

Findings

The data-driven hub loss model shows higher prediction accuracy than the traditional physics-based loss models. It can accurately capture the circumferentially and radially nonuniform variation trends of the losses and the associated absolute magnitudes in a BLI fan under different blade load, inlet distortion intensity and rotating speed conditions. Compared with the high-fidelity full-annulus URANS results, the averaged relative prediction errors of the data-driven hub loss model are kept less than 10%.

Originality/value

The originality of this paper lies in developing a new method for predicting flow loss in a BLI fan rotor blade hub region. This method offers higher prediction accuracy than the traditional loss models and lower computational time cost than the full-annulus URANS approach, which could realize fast evaluations of fan aerodynamic performances and provide technical support for designing high-performance BLI fans.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 September 2014

P. Laskaridis, V. Pachidis and P. Pilidis

The performance benefits of boundary layer ingestion (BLI) in the case of air vehicles powered by distributed propulsors have been documented and explored extensively by numerous…

1162

Abstract

Purpose

The performance benefits of boundary layer ingestion (BLI) in the case of air vehicles powered by distributed propulsors have been documented and explored extensively by numerous studies. Therefore, it is well known that increased inlet flow distortion due to BLI can dramatically reduce these benefits. In this context, a methodology that enables the assessment of different propulsion architectures, whilst accounting for these aerodynamic integration issues, is studied in this paper.

Design/methodology/approach

To calculate the effects of BLI-induced distortion, parametric and parallel compressor approaches have been implemented into the propulsion system analysis. The propulsion architectures study introduces the concept of thrust split between propulsors and main engines and also examines an alternative propulsor configuration. In the system analysis, optimum configurations are defined using thrust-specific fuel consumption as figure of merit.

Findings

For determined operating conditions, the system analysis found an optimum configuration for 65 per cent of thrust delivered by the propulsor array, which was attributed mainly to the influence of the propulsor’s intake losses. An alternative propulsor design, which used the ejector pump effect to re-energize the boundary layer, and avoiding the detrimental effects of BLI are also cited in this work.

Originality/value

To summarize, this paper contributes with a general review of the research that has been undertaken to tackle the aforementioned aerodynamic integration issues and, in this way, make viable the implementation of distributed propulsion systems with BLI.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 30 September 2014

Arne Seitz, Julian Bijewitz, Sascha Kaiser and Guido Wortmann

The purpose of this paper is the multi-disciplinary conceptual investigation of a propulsive fuselage (PF) aircraft layout allowing for new performance synergies through closely…

Abstract

Purpose

The purpose of this paper is the multi-disciplinary conceptual investigation of a propulsive fuselage (PF) aircraft layout allowing for new performance synergies through closely coupled propulsion/airframe integration. The discussed aircraft layout facilitates the ingestion of the fuselage boundary layer and the utilization of wake filling, thus eliminating a significant share of fuselage drag.

Design/methodology/approach

Based on consistent book-keeping standards for conventionally installed and highly integrated propulsion systems, key aspects of conceptualisation regarding airframe and propulsion system are presented. As a result of this, a PF aircraft configuration is proposed featuring a fuselage fan power plant in conjunction with two under-wing podded power plants. Parametric models for integrated aircraft and propulsion system sizing and performance analysis are discussed that are suitable for the consistent mapping of the characteristics intrinsic to a PF layout. In an initial benchmarking exercise, the vehicular efficiency potentials of the previously identified PF configuration are evaluated against an advanced conventional reference aircraft.

Findings

During benchmarking, it was found that a best and balanced design for the proposed PF aircraft layout yields an increase in vehicular efficiency of approximately 10 per cent compared to the advanced conventional reference aircraft.

Practical implications

The paper gives the reader an idea for the efficiency potentials achievable through a PF aircraft configuration, as well as guidelines for aircraft sizing and integrational aspects. It may serve as a basis for advanced studies in the future.

Originality/value

The conceptual investigation of the PF concept idea, contributes to establishing the initial technical feasibility of this novel approach to synergistic propulsion system integration. The methods presented in this paper allow for the multi-disciplinary conceptual design sizing of a PF aircraft.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 August 1969

K.S. Lawson

THE rate of progress in civil aviation during the last decade has been largely determined by engine development. When the jet engine was first used in civil aircraft it was a…

Abstract

THE rate of progress in civil aviation during the last decade has been largely determined by engine development. When the jet engine was first used in civil aircraft it was a means of obtaining higher speeds and improved passenger comfort at the expense of high fuel consumption and considerable annoyance to airport communities because of the noise. Significant improvements in fuel consumption and noise were obtained when the bypass concept was introduced, but there was a pause in development while the value of bypass ratio remained at about one. Another major forward step is being taken with the ‘new technology’ engines of bypass ratio five or more now under development, and it is timely to review the influence of these engines on the design of short range civil aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 41 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 8 February 2022

Mohamed Awad and Eike Stumpf

This research aims to present an aero-propulsive interaction model applied to conceptual aircraft design with distributed electric propulsion (DeP). The developed model includes a…

Abstract

Purpose

This research aims to present an aero-propulsive interaction model applied to conceptual aircraft design with distributed electric propulsion (DeP). The developed model includes a series of electric ducted fans integrated into the wing upper trailing edge, taking into account the effect of boundary layer ingestion (BLI). The developed model aims to estimate the aerodynamic performance of the wing with DeP using an accurate low-order computational model, which can be easily used in the overall aircraft design's optimization process.

Design/methodology/approach

First, the ducted fan aerodynamic performance is investigated using a low-order computational model over a range of angle of attack required for conventional flight based on ducted fan design code program and analytical models. Subsequently, the aero-propulsive coupling with the wing is introduced. The DeP location chordwise is placed at the wing's trailing edge to have the full benefits of the BLI. After that, the propulsion integration process is introduced. The nacelle design's primary function is to minimize the losses due to distortion. Finally, the aerodynamic forces of the overall configuration are estimated based on Athena Vortex Lattice program and the developed ducted fan model.

Findings

The ducted fan model is validated with experimental measurements from the literature. Subsequently, the overall model, the wing with DeP, is validated with experimental measurements and computational fluid dynamics, both from the literature. The results reveal that the currently developed model successfully estimates the aerodynamic performance of DeP located at the wing trailing edge.

Originality/value

The developed model's value is to capture the aero-propulsive coupling accurately and fast enough to execute multiple times in the overall aircraft design's optimization loop without increasing runtime substantially.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 1962

G.V. Lachmann

Since the end of the Second World War, many spectacular advances have been made in aeronautics, thanks chiefly to the development of more powerful and economical jet engines. As…

Abstract

Since the end of the Second World War, many spectacular advances have been made in aeronautics, thanks chiefly to the development of more powerful and economical jet engines. As to the parasitic drag of manned aircraft, progress has been confined to reducing unfavourable compressibility effects (area rule, Whitcombe bodies); methods to suppress separation have been developed but no new methods to reduce the drag resulting from turbulent boundary layers developing over the exposed surfaces have as yet found practical application.

Details

Aircraft Engineering and Aerospace Technology, vol. 34 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 7 March 2016

Julian Bijewitz, Arne Seitz, Askin T. Isikveren and Mirko Hornung

Motivated by the potential of gaining noticeable improvements in vehicular efficiency, this paper aims to investigate the benefits attainable from introducing a more synergistic…

Abstract

Purpose

Motivated by the potential of gaining noticeable improvements in vehicular efficiency, this paper aims to investigate the benefits attainable from introducing a more synergistic propulsion/airframe integration. In previous work, the concept of a boundary layer ingesting propulsor encircling the aft section of an axisymmetric fuselage was identified to be particularly promising for the realisation of aircraft wake filling, and hence, a significant reduction of the propulsive power required.

Design/methodology/approach

After reviewing the theoretical principles of the propulsive fuselage concept, a book-keeping and model matching procedure is introduced, which is subsequently used to incorporate the numerically computed aerodynamic characteristics of a propulsive fuselage aircraft configuration into a propulsion system (PPS) sizing and performance model. As part of this, design heuristics for important characteristics intrinsic to propulsive fuselage power plants are derived. Thereafter, parametric study results of the PPS are discussed, and the obtained characteristics are compared to those of a conventionally installed power plant. Finally, the impact of the investigated PPS on the integrated performance of a propulsive fuselage aircraft concept is studied, and the results are compared and contrasted to previously conducted analyses based on semi-empirical characteristics.

Findings

It was found that the aircraft-level benefit originally predicted based on semi-empirical methods could be confirmed using the numerically derived PPS design heuristics, specifically an improvement in vehicular efficiency of 10.4 per cent over an advanced conventional reference aircraft.

Practical implications

The approach presented in the paper may serve as a guideline when incorporating the results of high-fidelity aerodynamic methods into a PPS sizing and performance model suitable for aircraft-integrated assessment of a propulsive fuselage concept. The vehicular efficiency potentials offered through the synergistic PPS integration approach are highlighted.

Originality/value

The paper contributes to a deeper understanding of the characteristics of a boundary layer ingesting fuselage fan (FF) power plant relative to a conventionally installed PPS. In addition, a set of PPS design correlations are presented allowing for the integrated sizing of a FF power plant.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 22 March 2021

Mariusz Kowalski, Zdobyslaw Jan Goraj and Bartłomiej Goliszek

The purpose of this paper is to present the result of calculations that were performed to estimate the structural weight of the passenger aircraft using novel technological…

1788

Abstract

Purpose

The purpose of this paper is to present the result of calculations that were performed to estimate the structural weight of the passenger aircraft using novel technological solution. Mass penalty resulting from the installation of the fuselage boundary layer ingestion device was needed in the CENTRELINE project to be able to estimate the real benefits of the applied technology.

Design/methodology/approach

This paper focusses on the finite element analysis (FEA) of the fuselage and wing primary load-carrying structures. Masses obtained in these analyses were used as an input for the total structural mass calculation based on semi-empirical equations.

Findings

Combining FEA with semi-empirical equations makes it possible to estimate the mass of structures at an early technology readiness level and gives the possibility of obtaining more accurate results than those obtained using only empirical formulas. The applied methodology allows estimating the mass in case of using unusual structural solutions, which are not covered by formulas available in the literature.

Practical implications

Accurate structural mass estimation is possible at an earlier design stage of the project based on the presented methodology, which allows for easier and less costly changes in designed aircrafts.

Originality/value

The presented methodology is an original method of mass estimation based on a two-track approach. The analytical formulas available in the literature have worked well for aeroplanes of conventional design, but thanks to the connection with FEA presented in this paper, it is possible to estimate the structure mass of aeroplanes using unconventional technological solutions.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 127