Search results

1 – 10 of 374
Article
Publication date: 30 September 2014

Arne Seitz, Julian Bijewitz, Sascha Kaiser and Guido Wortmann

The purpose of this paper is the multi-disciplinary conceptual investigation of a propulsive fuselage (PF) aircraft layout allowing for new performance synergies through closely…

Abstract

Purpose

The purpose of this paper is the multi-disciplinary conceptual investigation of a propulsive fuselage (PF) aircraft layout allowing for new performance synergies through closely coupled propulsion/airframe integration. The discussed aircraft layout facilitates the ingestion of the fuselage boundary layer and the utilization of wake filling, thus eliminating a significant share of fuselage drag.

Design/methodology/approach

Based on consistent book-keeping standards for conventionally installed and highly integrated propulsion systems, key aspects of conceptualisation regarding airframe and propulsion system are presented. As a result of this, a PF aircraft configuration is proposed featuring a fuselage fan power plant in conjunction with two under-wing podded power plants. Parametric models for integrated aircraft and propulsion system sizing and performance analysis are discussed that are suitable for the consistent mapping of the characteristics intrinsic to a PF layout. In an initial benchmarking exercise, the vehicular efficiency potentials of the previously identified PF configuration are evaluated against an advanced conventional reference aircraft.

Findings

During benchmarking, it was found that a best and balanced design for the proposed PF aircraft layout yields an increase in vehicular efficiency of approximately 10 per cent compared to the advanced conventional reference aircraft.

Practical implications

The paper gives the reader an idea for the efficiency potentials achievable through a PF aircraft configuration, as well as guidelines for aircraft sizing and integrational aspects. It may serve as a basis for advanced studies in the future.

Originality/value

The conceptual investigation of the PF concept idea, contributes to establishing the initial technical feasibility of this novel approach to synergistic propulsion system integration. The methods presented in this paper allow for the multi-disciplinary conceptual design sizing of a PF aircraft.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 7 March 2016

Julian Bijewitz, Arne Seitz, Askin T. Isikveren and Mirko Hornung

Motivated by the potential of gaining noticeable improvements in vehicular efficiency, this paper aims to investigate the benefits attainable from introducing a more synergistic…

Abstract

Purpose

Motivated by the potential of gaining noticeable improvements in vehicular efficiency, this paper aims to investigate the benefits attainable from introducing a more synergistic propulsion/airframe integration. In previous work, the concept of a boundary layer ingesting propulsor encircling the aft section of an axisymmetric fuselage was identified to be particularly promising for the realisation of aircraft wake filling, and hence, a significant reduction of the propulsive power required.

Design/methodology/approach

After reviewing the theoretical principles of the propulsive fuselage concept, a book-keeping and model matching procedure is introduced, which is subsequently used to incorporate the numerically computed aerodynamic characteristics of a propulsive fuselage aircraft configuration into a propulsion system (PPS) sizing and performance model. As part of this, design heuristics for important characteristics intrinsic to propulsive fuselage power plants are derived. Thereafter, parametric study results of the PPS are discussed, and the obtained characteristics are compared to those of a conventionally installed power plant. Finally, the impact of the investigated PPS on the integrated performance of a propulsive fuselage aircraft concept is studied, and the results are compared and contrasted to previously conducted analyses based on semi-empirical characteristics.

Findings

It was found that the aircraft-level benefit originally predicted based on semi-empirical methods could be confirmed using the numerically derived PPS design heuristics, specifically an improvement in vehicular efficiency of 10.4 per cent over an advanced conventional reference aircraft.

Practical implications

The approach presented in the paper may serve as a guideline when incorporating the results of high-fidelity aerodynamic methods into a PPS sizing and performance model suitable for aircraft-integrated assessment of a propulsive fuselage concept. The vehicular efficiency potentials offered through the synergistic PPS integration approach are highlighted.

Originality/value

The paper contributes to a deeper understanding of the characteristics of a boundary layer ingesting fuselage fan (FF) power plant relative to a conventionally installed PPS. In addition, a set of PPS design correlations are presented allowing for the integrated sizing of a FF power plant.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 May 1946

A Summary by Dr. Alexander Klemin of the Papers Presented Before the Fourteenth Meeting of the Institute held at Columbia University, New York, on January 29–31, 1946…

Abstract

A Summary by Dr. Alexander Klemin of the Papers Presented Before the Fourteenth Meeting of the Institute held at Columbia University, New York, on January 29–31, 1946. AERODYNAMICS IN spite of increased wing loadings, the use of full span wing flaps has been delayed, because of inability to find a suitable aileron. The Development of a Lateral‐Control System for use with Large‐Span Flaps by I. L. Ashkenas (Northrop Aircraft), outlines the various steps in the aerodynamic development of a retractable aileron system well adapted to the full span flap and successfully employed on the Northrop P‐61. Included is a discussion of the basic data used, the design calculations made, and the effect of structural and mechanical considerations. Changes made as a result of preliminary flight tests are discussed and the final flight‐test results are presented. It is concluded that the use of this retractable aileron system has, in addition to the basic advantage of increased flap span, the following desirable control characteristics: (a) favourable yawing moments, (b) low wing‐torsional loads, (c) small pilot forces, even at high speed.

Details

Aircraft Engineering and Aerospace Technology, vol. 18 no. 5
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 1 May 2002

1313

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 11 no. 2
Type: Research Article
ISSN: 0965-3562

Open Access
Article
Publication date: 22 March 2021

Mariusz Kowalski, Zdobyslaw Jan Goraj and Bartłomiej Goliszek

The purpose of this paper is to present the result of calculations that were performed to estimate the structural weight of the passenger aircraft using novel technological…

1597

Abstract

Purpose

The purpose of this paper is to present the result of calculations that were performed to estimate the structural weight of the passenger aircraft using novel technological solution. Mass penalty resulting from the installation of the fuselage boundary layer ingestion device was needed in the CENTRELINE project to be able to estimate the real benefits of the applied technology.

Design/methodology/approach

This paper focusses on the finite element analysis (FEA) of the fuselage and wing primary load-carrying structures. Masses obtained in these analyses were used as an input for the total structural mass calculation based on semi-empirical equations.

Findings

Combining FEA with semi-empirical equations makes it possible to estimate the mass of structures at an early technology readiness level and gives the possibility of obtaining more accurate results than those obtained using only empirical formulas. The applied methodology allows estimating the mass in case of using unusual structural solutions, which are not covered by formulas available in the literature.

Practical implications

Accurate structural mass estimation is possible at an earlier design stage of the project based on the presented methodology, which allows for easier and less costly changes in designed aircrafts.

Originality/value

The presented methodology is an original method of mass estimation based on a two-track approach. The analytical formulas available in the literature have worked well for aeroplanes of conventional design, but thanks to the connection with FEA presented in this paper, it is possible to estimate the structure mass of aeroplanes using unconventional technological solutions.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 September 2017

Tomasz Goetzendorf-Grabowski and Jacek Mieloszyk

Conceptual and preliminary aircraft concepts are getting mature earlier in the design process, than ever before. To achieve that advanced level of maturity, multiple…

Abstract

Purpose

Conceptual and preliminary aircraft concepts are getting mature earlier in the design process, than ever before. To achieve that advanced level of maturity, multiple multidisciplinary analyses have to be done, often with usage of numerical optimization algorithms. This calls for right tools that can handle such a demanding task. Often the toughest part of a modern design is handling an aircraft’s computational models used for different analysis. Transferring geometry and loads from one program to another, or modifying internal structure, takes time and is not productive. Authors defined the concept of a common computational model (CCM), which couples programs from different aerospace scientific disciplines. Data exchange between the software components is compatible, and multidisciplinary analysis can be automated to high degree, including numerical optimization.

Design/methodology/approach

The panel method was applied to aerodynamic analysis and was coupled with open-source FEM code within one computational process.

Findings

The numerical results proved the effectiveness of developed methodology.

Practical implications

Developed software can be used within the design process of a new aircraft.

Originality/value

This paper presents an original approach for advanced numerical analysis, as well as for multidisciplinary optimization of an aircraft. The presented results show possible applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 July 2016

Fabrizio Nicolosi, Salvatore Corcione and Pierluigi Della Vecchia

This paper aims to deal with the experimental estimation of both longitudinal- and lateral-directional aerodynamic characteristics of a new twin-engine, 11-seat commuter aircraft.

Abstract

Purpose

This paper aims to deal with the experimental estimation of both longitudinal- and lateral-directional aerodynamic characteristics of a new twin-engine, 11-seat commuter aircraft.

Design/methodology/approach

Wind tunnel tests have been conducted on a 1:8.75 scaled model. A modular model (fuselage, wing, nacelle, winglet and tail planes) has been built to analyze both complete aircraft aerodynamic characteristics and mutual effects among components. The model has been also equipped with trailing edge flaps, elevator and rudder control surfaces.

Findings

Longitudinal tests have shown the goodness of the aircraft design in terms of aircraft stability, control and trim capabilities at typical clean, take-off and landing conditions. The effects of fuselage, nacelles and winglets on lift, pitching moment and drag coefficients have been investigated. Lateral-directional stability and control characteristics of the complete aircraft and several aircraft component combinations have been tested to estimate the aircraft components’ interactions.

Research limitations/implications

The experimental tests have been performed at a Reynolds number of about 0.6e6, whereas the free-flight Reynolds number range should be between 4.5e6 and 9.5e6. Thus, all the measured data suffer from the Reynolds number scaling effect.

Practical implications

The study provides useful aerodynamic database for P2012 Traveller commuter aircraft.

Originality/value

The paper deals with the experimental investigation of a new general aviation 11-seat commuter aircraft being brought to market by Tecnam Aircraft Industries and it brings some material on applied industrial design in the open literature.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 December 1948

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Notes of the United States National…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Notes of the United States National Advisory Committee for Aeronautics and publications of other similar Research Bodies as issued

Details

Aircraft Engineering and Aerospace Technology, vol. 20 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 1987

Mayday

EFFORTS have been and are currently being made to improve the survivability of passengers where the decelerations experienced should not result in injuries which prevent escape…

Abstract

EFFORTS have been and are currently being made to improve the survivability of passengers where the decelerations experienced should not result in injuries which prevent escape from the cabin. All too often, inhalation of toxic fumes has been the cause of fatalities and measures recently incorporated are aimed to try and ensure that such a situation is most unlikely to arise. This is particularly relevant in the wake of the 1985 Manchester accident and the full report which is to be published soon, is expected to contain a considerable amount of information and further recommendations. Meanwhile it is worth looking at the full details available of the DC‐9 inflight fire which caused the aircraft to make an emergency landing at Cincinnati Airport, in so far as this concerns the conditions in the cabin and the survival and evacuation aspects.

Details

Aircraft Engineering and Aerospace Technology, vol. 59 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 1957

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Memoranda of the United States…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Memoranda of the United States National Advisory Committee for Aeronautics and publications of other similar Research Bodies as issued.

Details

Aircraft Engineering and Aerospace Technology, vol. 29 no. 3
Type: Research Article
ISSN: 0002-2667

1 – 10 of 374