Search results

1 – 10 of 393
Article
Publication date: 30 September 2014

P. Laskaridis, V. Pachidis and P. Pilidis

The performance benefits of boundary layer ingestion (BLI) in the case of air vehicles powered by distributed propulsors have been documented and explored extensively by numerous…

1134

Abstract

Purpose

The performance benefits of boundary layer ingestion (BLI) in the case of air vehicles powered by distributed propulsors have been documented and explored extensively by numerous studies. Therefore, it is well known that increased inlet flow distortion due to BLI can dramatically reduce these benefits. In this context, a methodology that enables the assessment of different propulsion architectures, whilst accounting for these aerodynamic integration issues, is studied in this paper.

Design/methodology/approach

To calculate the effects of BLI-induced distortion, parametric and parallel compressor approaches have been implemented into the propulsion system analysis. The propulsion architectures study introduces the concept of thrust split between propulsors and main engines and also examines an alternative propulsor configuration. In the system analysis, optimum configurations are defined using thrust-specific fuel consumption as figure of merit.

Findings

For determined operating conditions, the system analysis found an optimum configuration for 65 per cent of thrust delivered by the propulsor array, which was attributed mainly to the influence of the propulsor’s intake losses. An alternative propulsor design, which used the ejector pump effect to re-energize the boundary layer, and avoiding the detrimental effects of BLI are also cited in this work.

Originality/value

To summarize, this paper contributes with a general review of the research that has been undertaken to tackle the aforementioned aerodynamic integration issues and, in this way, make viable the implementation of distributed propulsion systems with BLI.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 19 August 2019

Jing Zhang, Wenwen Kang and Lingyu Yang

Boundary layer ingestion (BLI) is one of the probable noteworthy features of distributed propulsion configuration (DPC). Because of BLI, strong coupling effects are generated…

Abstract

Purpose

Boundary layer ingestion (BLI) is one of the probable noteworthy features of distributed propulsion configuration (DPC). Because of BLI, strong coupling effects are generated between the aerodynamics and propulsion system of aircraft, leading to the specific lift and drag aerodynamic characteristics. This paper aims to propose a model-based comprehensive analysis method to investigate this unique aerodynamic.

Design/methodology/approach

To investigate this unique aerodynamics, a model-based comprehensive analysis method is proposed. This method uses a detailed mathematical model of the distributed propulsion system to provide the essential boundary conditions and guarantee the accuracy of calculation results. Then a synthetic three-dimensional computational model is developed to analyze the effects of BLI on the lift and drag aerodynamic characteristics.

Findings

Subsequently, detailed computational analyses are conducted at different flight states, and the regularities under various flight altitudes and velocities are revealed. Computational results demonstrate that BLI can improve the lift to drag ratio evidently and enable a great performance potentiality.

Practical implications

The general analysis method and useful regularities have reference value to DPC aircraft and other similar aircrafts.

Originality/value

This paper proposed a DPS model-based comprehensive analysis method of BLI benefit on aerodynamics for DPC aircraft, and the unique aerodynamics of this new configuration under various flight altitudes and velocities was revealed.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 May 2020

Gokcin Cinar, Elena Garcia and Dimitri N. Mavris

The purpose of this paper was to create a generic and flexible framework for the exploration, evaluation and side-by-side comparison of novel propulsion architectures. The intent…

Abstract

Purpose

The purpose of this paper was to create a generic and flexible framework for the exploration, evaluation and side-by-side comparison of novel propulsion architectures. The intent for these evaluations was to account for varying operation strategies and to support architectural design space decisions, at the conceptual design stages, rather than single-point design solutions.

Design/methodology/approach

To this end, main propulsion subsystems were categorized into energy, power and thrust sources. Two types of matrices, namely, the property and interdependency matrices, were created to describe the relationships and power flows among these sources. These matrices were used to define various electrified propulsion architectures, including, but not limited to, turboelectric, series-parallel and distributed electric propulsion configurations.

Findings

As a case study, the matrices were used to generate and operate the distributed electric propulsion architecture of NASA’s X-57 Mod IV aircraft concept. The mission performance results were acceptably close to the data obtained from the literature. Finally, the matrices were used to simulate the changes in the operation strategy under two motor failure scenarios to demonstrate the ease of use, rapidness and automation.

Originality/value

It was seen that this new framework enables rapid and analysis-based comparisons among unconventional propulsion architectures where solutions are driven by requirements.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 September 2014

Jeffrey Freeman, Philip Osterkamp, Michael Green, Andrew Gibson and Benjamin Schiltgen

The purpose of this article is to provide an outline of the challenges of thermal management for more-electric, hybrid-electric and all-electric aircraft, and to notionally…

2391

Abstract

Purpose

The purpose of this article is to provide an outline of the challenges of thermal management for more-electric, hybrid-electric and all-electric aircraft, and to notionally discuss potential solutions.

Design/methodology/approach

A code algorithm was developed to facilitate architecture-level analysis of the coupled relationship between the propulsion system, the thermal management system, and the takeoff gross weight of aircraft with advanced propulsion systems.

Findings

A variety of coupled relationships between the propulsion and thermal management systems are identified, and their impact on the conceptual design choices for electric aircraft are discussed qualitatively.

Research limitations/implications

This conceptual article merely illuminates some driving factors associated with thermal management. The software is still in its adolescence and is experiencing ongoing development.

Practical implications

Thermal regulation in electric aircraft is shown to be a topic that should be addressed in tandem with propulsion system architecture definition and component selection. High-power electronics are expected to emit an immense amount of heat, and the common avenues of heat dissipation could substantially impact the aircraft’s weight, drag and performance. Conversely, strategic management of this waste heat could support subsystems or even produce additional thrust.

Social implications

This paper aims to direct the attention of researchers and designers in the field of hybrid- or all-electric aircraft design toward the challenges and potential benefits of thermal management.

Originality/value

This paper describes a novel conceptual design software and discusses its logic flow and implications.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 20 February 2023

Y. Chandukrishna and T.N. Venkatesh

Recent interest in electric aircraft has opened avenues for exploring innovative concepts and designs. Because of its potential to increase wing aerodynamic efficiency, the idea…

Abstract

Purpose

Recent interest in electric aircraft has opened avenues for exploring innovative concepts and designs. Because of its potential to increase wing aerodynamic efficiency, the idea of wing tip-mounted propellers is becoming more popular in the context of electric aircraft. This paper aims to address the question of which configuration, tractor or pusher at wing tip is more beneficial.

Design/methodology/approach

The interactions between the wing and tip-mounted propellers in tractor and pusher configurations have been studied computationally. In this study, the propeller is modeled as a disk, and the blade element method (BEM) coupled with the computational fluid dynamics (CFD)–Reynolds-averaged Navier–Stokes (RANS) solver is used to calculate propeller blade loading recursively. A direct comparison between the wing with tip-mounted propellers in tractor and pusher configurations is made by varying the direction of rotation and thrust.

Findings

Wing with tip-mounted propellers having inboard-up rotation is found to offer less drag in tractor and pusher configurations than those without propeller cases. Wing tip-mounted propeller in tractor configuration with inboard-up rotation offers higher wing aerodynamic efficiency than the other configurations. In tractor and pusher configurations with inboard-up rotating propellers, wing tip vortex attenuation is seen, whereas with outboard-up rotating propellers, the wing tip vortex amplification is observed.

Originality/value

SU2, an open-source CFD tool, is used in this study and BEM is coupled to perform RANS–BEM simulations. Both qualitative and quantitative comparisons were made between the tractor and pusher configurations, which may find its value when a question arises about the aerodynamically best propeller configuration at wing tips.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 September 2014

Hyun Dae Kim, James L. Felder, Michael T. Tong, Jeffrey J. Berton and William J. Haller

– The purpose of this article is to present a summary of recent study results on a turboelectric distributed propulsion vehicle concept named N3-X.

1206

Abstract

Purpose

The purpose of this article is to present a summary of recent study results on a turboelectric distributed propulsion vehicle concept named N3-X.

Design/methodology/approach

The turboelectric distributed propulsion system uses multiple electric motor-driven propulsors that are distributed on an aircraft. The power to drive these electric propulsors is generated by separately located gas turbine-driven electric generators on the airframe. To estimate the benefits associated with this new propulsion concept, a system analysis was performed on a hybrid-wing-body transport configuration to determine fuel burn (or energy usage), community noise and emissions reductions.

Findings

N3-X would be able to reduce energy consumption by 70-72 per cent compared to a reference vehicle, a Boeing 777-200LR, flying the same mission. Predictions for landing and take-off NOX are estimated to be 85 per cent less than the Tier 6-CAEP/6 standard. Two variants of the N3-X vehicle were examined for certification noise and found to have International Civil Aviation Organization Chapter 4 cumulative margins of 32EPNdB and 64EPNdB.

Practical implications

It is expected that the turboelectric distributed propulsion system may indeed provide unprecedented reductions in fuel/energy consumption, community noise and landing and take-off NOX emissions required in future transport aircraft.

Originality/value

The studied propulsion concept is a step change from the conventional propulsion system and addresses growing aviation demands and concerns on the environment and energy usage.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 8 February 2022

Mohamed Awad and Eike Stumpf

This research aims to present an aero-propulsive interaction model applied to conceptual aircraft design with distributed electric propulsion (DeP). The developed model includes a…

Abstract

Purpose

This research aims to present an aero-propulsive interaction model applied to conceptual aircraft design with distributed electric propulsion (DeP). The developed model includes a series of electric ducted fans integrated into the wing upper trailing edge, taking into account the effect of boundary layer ingestion (BLI). The developed model aims to estimate the aerodynamic performance of the wing with DeP using an accurate low-order computational model, which can be easily used in the overall aircraft design's optimization process.

Design/methodology/approach

First, the ducted fan aerodynamic performance is investigated using a low-order computational model over a range of angle of attack required for conventional flight based on ducted fan design code program and analytical models. Subsequently, the aero-propulsive coupling with the wing is introduced. The DeP location chordwise is placed at the wing's trailing edge to have the full benefits of the BLI. After that, the propulsion integration process is introduced. The nacelle design's primary function is to minimize the losses due to distortion. Finally, the aerodynamic forces of the overall configuration are estimated based on Athena Vortex Lattice program and the developed ducted fan model.

Findings

The ducted fan model is validated with experimental measurements from the literature. Subsequently, the overall model, the wing with DeP, is validated with experimental measurements and computational fluid dynamics, both from the literature. The results reveal that the currently developed model successfully estimates the aerodynamic performance of DeP located at the wing trailing edge.

Originality/value

The developed model's value is to capture the aero-propulsive coupling accurately and fast enough to execute multiple times in the overall aircraft design's optimization loop without increasing runtime substantially.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 September 2014

Howard Smith

The purpose of this paper is to explore some of the challenges associated with the integration of an LH2-fuelled advanced hybrid-electric distributed propulsion system with the…

Abstract

Purpose

The purpose of this paper is to explore some of the challenges associated with the integration of an LH2-fuelled advanced hybrid-electric distributed propulsion system with the airframe. The airframe chosen as a case study is an ultra-high-capacity blended wing body configuration. It is designed to represent an A-380 class vehicle but in the 2025-2030 timeframe. The distributed propulsion system is a hybrid-electric concept that utilizes high-temperature superconducting technologies. The focus of the study is the application of LH2 as a fuel, with comment being given to kerosene and LCH4.

Design/methodology/approach

The study consists of a conceptual design developed through the preliminary design phase and part way into the detailed design phase.

Findings

The relationship between passenger capacity and fuel capacity is developed. Some remaining challenges are identified.

Practical implications

The study supports further conceptual design studies and more detailed system studies.

Social implications

The study contributes to the development of more environmentally benign aviation technologies. The study may assist the development of solutions to the peak oil challenge.

Originality/value

The study explores the integration of a number of complex systems into an advanced airframe to an unusual depth of engineering detail.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 30 September 2014

Kevin Reynolds, Nhan Nguyen, Eric Ting and James Urnes Sr

The purpose of this research is to explore innovative aircraft concepts that use flexible wings and distributed propulsion to significantly reduce fuel burn of future transport…

Abstract

Purpose

The purpose of this research is to explore innovative aircraft concepts that use flexible wings and distributed propulsion to significantly reduce fuel burn of future transport aircraft by exploiting multidisciplinary interactions.

Design/methodology/approach

Multidisciplinary analysis and trajectory optimization are used to evaluate the mission performance benefits of flexible wing distributed propulsion aircraft concepts.

Findings

The flexible wing distributed propulsion aircraft concept was shown to achieve a 4 per cent improvement in L/D over a mission profile consisting of a minimum fuel climb, minimum fuel cruise and continuous descent.

Practical implications

The technologies being investigated may lead to mission adaptive aircraft that can minimize drag, and thus fuel burn, throughout the flight envelope.

Originality/value

The aircraft concepts being explored seek to create synergistic interactions between disciplines for reducing fuel burn while capitalizing on the potential benefits of lightweight, flexible wing structures and distributed propulsion.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 30 September 2014

Arne Seitz, Julian Bijewitz, Sascha Kaiser and Guido Wortmann

The purpose of this paper is the multi-disciplinary conceptual investigation of a propulsive fuselage (PF) aircraft layout allowing for new performance synergies through closely…

Abstract

Purpose

The purpose of this paper is the multi-disciplinary conceptual investigation of a propulsive fuselage (PF) aircraft layout allowing for new performance synergies through closely coupled propulsion/airframe integration. The discussed aircraft layout facilitates the ingestion of the fuselage boundary layer and the utilization of wake filling, thus eliminating a significant share of fuselage drag.

Design/methodology/approach

Based on consistent book-keeping standards for conventionally installed and highly integrated propulsion systems, key aspects of conceptualisation regarding airframe and propulsion system are presented. As a result of this, a PF aircraft configuration is proposed featuring a fuselage fan power plant in conjunction with two under-wing podded power plants. Parametric models for integrated aircraft and propulsion system sizing and performance analysis are discussed that are suitable for the consistent mapping of the characteristics intrinsic to a PF layout. In an initial benchmarking exercise, the vehicular efficiency potentials of the previously identified PF configuration are evaluated against an advanced conventional reference aircraft.

Findings

During benchmarking, it was found that a best and balanced design for the proposed PF aircraft layout yields an increase in vehicular efficiency of approximately 10 per cent compared to the advanced conventional reference aircraft.

Practical implications

The paper gives the reader an idea for the efficiency potentials achievable through a PF aircraft configuration, as well as guidelines for aircraft sizing and integrational aspects. It may serve as a basis for advanced studies in the future.

Originality/value

The conceptual investigation of the PF concept idea, contributes to establishing the initial technical feasibility of this novel approach to synergistic propulsion system integration. The methods presented in this paper allow for the multi-disciplinary conceptual design sizing of a PF aircraft.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 393