Search results

1 – 2 of 2
Article
Publication date: 4 April 2019

Esin Sarıoğlu

The purpose of this paper is to compare the bursting strength, bursting distension, air permeability and wale wise wicking rate properties of recycled polyester (r-PET) and virgin…

Abstract

Purpose

The purpose of this paper is to compare the bursting strength, bursting distension, air permeability and wale wise wicking rate properties of recycled polyester (r-PET) and virgin polyester (v-PET) raw materials from which single jersey knitted fabric samples are manufactured. Meanwhile, numerical optimization method was used in predetermined parameters to determine the optimum r-PET and v-PET blend ratio and yarn manufacturing technology. In the optimization analysis, the average values of the important yarn and fabric properties inspected were taken as a target according to the 50 percent proportion of r-PET and v-PET fiber for both compact and ring yarn manufacturing technology.

Design/methodology/approach

To encourage the use of value-added textile products produced from recycling PET bottle with the focus of social responsibility is a condition that should be evaluated within the scope of waste management. The recycling of PET bottles and finding new opportunities for the uses in different field are crucial for both contributing environmental economy and conserving natural energy resources. The most important alternative ways is to use the r-PET fiber from recycling PET bottle in textile industry. In this study, 19.7 tex r-PET/cotton and v-PET/cotton-blended compact and ring spun yarns were produced at different blending ratios at the same production parameters.

Findings

Results showed that blend type, blend ratio and yarn manufacturing technology have statistical significance effect on bursting strength and air permeability. Besides, it was found that blend type has no significance on wale wise wicking rate unlike other parameters. Optimization analysis indicated that single jersey knitted fabric with v-PET/CO 58.62/41.38 percent compact yarn had higher desirability with the value of 0.72.

Originality/value

At the present time, r-PET fiber is blended in small amount (approximately 5–15 percent blend ratio) with both cotton and polyester together. In addition, it is possible using different fiber blend types instead of cotton and polyester according to the usage area. The most important question is to determine the amount of r-PET proportion. In other words, both optimum yarn/fabric quality parameters should be ensured and at the same time life cycle of the apparels should not be short when the optimum r-PET proportion is taken into consideration.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 July 2020

Weaam Jameel Alkhateeb

This study aims to investigate the effect of process parameters of blow room machines on openness degree and quality of cotton tufts in a blow room.

Abstract

Purpose

This study aims to investigate the effect of process parameters of blow room machines on openness degree and quality of cotton tufts in a blow room.

Design/methodology/approach

For this purpose, an experimental Box–Behnken design (BBD) was used, and the process parameters were the angles of the grid bars underneath the opening rollers of CVT3 beaters and the distance between feed roller of the first opening roller of CVT3.

Findings

It was found that the cotton tuft openness increased by increasing the angles of grid bars and by decreasing the distance between the feed roller and first opening roller on CVT3 beater. Further, the optimization procedure showed that an optimum value of cotton tuft openness (in laser method) was determined for specific levels of the process parameters.

Originality/value

The originality of this investigation is that it showed the individual effects and interactions of the most important factors in two tufting machines instead of only one machine. This study is important because it helps cotton yarn spinners to improve the quality of the final yarns by optimizing the levels of tuft openness which in turn improves fiber cleaning.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 2 of 2