Search results

1 – 5 of 5
Open Access
Article
Publication date: 19 March 2021

Dandan Qiu, Lei Luo, Zhiqi Zhao, Songtao Wang, Zhongqi Wang and Bengt Ake Sunden

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement…

1090

Abstract

Purpose

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement conjugated with film cooling in a semicylinder double wall channel.

Design/methodology/approach

Numerical simulations are used in this research. Streamlines on different sections, skin-friction lines, velocity, wall shear stress and turbulent kinetic energy contours near the concave target wall and vortices in the double channel are presented. Local Nusselt number contours and surface averaged Nusselt numbers are also obtained. Topology analysis is applied to further understand the fluid flow and is used in analyzing the heat transfer characteristics.

Findings

It is found that the arrangement of side films positioned far from the center jets helps to enhance the flow disturbance and heat transfer behind the film holes. The heat transfer uniformity for the case of 55° films arrangement angle is most improved and the thermal performance is the highest in this study.

Originality/value

The film holes’ arrangements effects on fluid flow and heat transfer in an impingement cooled concave channel are conducted. The flow structures in the channel and flow characteristics near target by topology pictures are first obtained for the confined film cooled impingement cases. The heat transfer distributions are analyzed with the flow characteristics. The highest heat transfer uniformity and thermal performance situation is obtained in present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 23 September 2021

Jian Liu, Mengyao Xu, Wenxiong Xi, Jiawen Song, Shibin Luo and Bengt Ake Sunden

Endwall film cooling protects vane endwall by coolant coverage, especially at the leading edge (LE) region and vane-pressure side (PS) junction region. Strong flow impingement and…

Abstract

Purpose

Endwall film cooling protects vane endwall by coolant coverage, especially at the leading edge (LE) region and vane-pressure side (PS) junction region. Strong flow impingement and complex vortexaa structures on the vane endwall cause difficulties for coolant flows to cover properly. This work aims at a full-scale arrangement of film cooling holes on the endwall which improves coolant efficiency in the LE region and vane-PS junction region.

Design/methodology/approach

The endwall film holes are grouped in four-holes constructal patterns. Three ways of arranging the groups are studied: based on the pressure field, the streamlines or the heat transfer field. The computational analysis is done with the k-ω SST model after validating the turbulence model properly.

Findings

By clustering the film cooling holes in four-holes patterns, the ejection of the coolant flow is stronger. The four-holes constructal patterns also improve the local coolant coverage in the “tough” regions, such as the junction region of the PS and the endwall. The arrangement based on streamlines distribution can effectively improve the coolant coverage and the arrangement based on the heat transfer distribution (HTD) has benefits by reducing high-temperature regions on the endwall.

Originality/value

A full-scale endwall film cooling design is presented considering interactions of different film cooling holes. A comprehensive model validation and mesh independence study are provided. The cooling holes pattern on the endwall is designed as four-holes constructal patterns combined with several arrangement choices, i.e. by pressure, by heat transfer and by streamline distributions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 9 August 2023

Jie Zhang, Yuwei Wu, Jianyong Gao, Guangjun Gao and Zhigang Yang

This study aims to explore the formation mechanism of aerodynamic noise of a high-speed maglev train and understand the characteristics of dipole and quadrupole sound sources of…

382

Abstract

Purpose

This study aims to explore the formation mechanism of aerodynamic noise of a high-speed maglev train and understand the characteristics of dipole and quadrupole sound sources of the maglev train at different speed levels.

Design/methodology/approach

Based on large eddy simulation (LES) method and Kirchhoff–Ffowcs Williams and Hawkings (K-FWH) equations, the characteristics of dipole and quadrupole sound sources of maglev trains at different speed levels were simulated and analyzed by constructing reasonable penetrable integral surface.

Findings

The spatial disturbance resulting from the separation of the boundary layer in the streamlined area of the tail car is the source of aerodynamic sound of the maglev train. The dipole sources of the train are mainly distributed around the radio terminals of the head and tail cars of the maglev train, the bottom of the arms of the streamlined parts of the head and tail cars and the nose tip area of the streamlined part of the tail car, and the quadrupole sources are mainly distributed in the wake area. When the train runs at three speed levels of 400, 500 and 600 km·h−1, respectively, the radiated energy of quadrupole source is 62.4%, 63.3% and 71.7%, respectively, which exceeds that of dipole sources.

Originality/value

This study can help understand the aerodynamic noise characteristics generated by the high-speed maglev train and provide a reference for the optimization design of its aerodynamic shape.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 8 January 2020

Guillermo A. Riveros, Felipe J. Acosta, Reena R. Patel and Wayne Hodo

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The…

1056

Abstract

Purpose

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The exterior tissue of the rostrum covers the cartilage that surrounds the bones forming interlocking star shaped bones.

Design/methodology/approach

The aim of this work is to assess the mechanical behavior of four finite element models varying the type of formulation as follows: linear-reduced integration, linear-full integration, quadratic-reduced integration and quadratic-full integration. The paper also presents the load transfer mechanisms of the bone structure of the rostrum. The base material used in the study was steel with elastic–plastic behavior as a homogeneous material before applying materials properties that represents the behavior of bones, cartilages and tissues.

Findings

Conclusions are based on comparison among the four models. There is no significant difference between integration orders for similar type of elements. Quadratic-reduced integration formulation resulted in lower structural stiffness compared with linear formulation as seen by higher displacements and stresses than using linearly formulated elements. It is concluded that second-order elements with reduced integration are the alternative to analyze biological structures as they can better adapt to the complex natural contours and can model accurately stress concentrations and distributions without over stiffening their general response.

Originality/value

The use of advanced computational mechanics techniques to analyze the complex geometry and components of the paddlefish rostrum provides a viable avenue to gain fundamental understanding of the proper finite element formulation needed to successfully obtain the system behavior and hot spot locations.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 20 August 2021

Enrique Sanmiguel-Rojas and Ramon Fernandez-Feria

This paper aims to analyze the propulsive performance of small-amplitude pitching foils at very high frequencies with double objectives: to find out scaling laws for the…

Abstract

Purpose

This paper aims to analyze the propulsive performance of small-amplitude pitching foils at very high frequencies with double objectives: to find out scaling laws for the time-averaged thrust and propulsive efficiency at very high frequencies; and to characterize the Strouhal number above which the effect of turbulence on the mean values cannot be neglected.

Design/methodology/approach

The thrust force and propulsive efficiency of a pitching NACA0012 foil at high reduced frequencies (k) and a Reynolds number Re = 16 000 are analyzed using accurate numerical simulations, both assuming laminar flow and using a transition turbulence model. The time-averaged results are validated with available experimental data for k up to about 12 (Strouhal number, St, up to 0.6). This study also compares the present numerical results with the predictions of theoretical models and existing numerical results. For a foil pitching about its quarter chord with amplitude α0 = 8o, the reduced frequency is varied here up to k = 30 (St up to 2), much higher than in any previous numerical or experimental work.

Findings

For this pitch amplitude, turbulence effects are found negligible for St ≲ 0.8, and affecting less than 10% to the time-averaged thrust coefficient CT¯ for larger St Linear potential theory fails for very large k, even for the small pitch amplitude considered, particularly for the power coefficient, and therefore for the propulsive efficiency. It is found that CT¯St2 for large St, in agreement with recent models, and the propulsive efficiency decays as 1/k, in disagreement with the linear potential theory.

Originality/value

Pitching foils are increasingly studied as efficient propellers and energy harvesting devices. Their performance at very high reduced frequencies has not been sufficiently analyzed before. The authors provide accurate numerical simulations to discern when turbulence is relevant for the computation of the time-averaged thrust and efficiency and how their scaling with the reduced frequency is affected in relation to the laminar-flow predictions. This is relevant because some small-amplitude theoretical models predict high propulsive efficiency of pitching foils at very high frequencies over certain ranges of the structural parameters, and only very accurate numerical simulations may decide on these predictions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Only content I have access to

Year

Content type

Article (5)
1 – 5 of 5