Search results

1 – 10 of 99
Article
Publication date: 28 July 2021

Krishna Anand Vasu Devan Nair Girija Kumari and Parammasivam Kanjikoil Mahali

This paper aims to investigate the film cooling effectiveness (FCE) and mixing flow characteristics of the flat surface ramp model integrated with a compound angled film cooling…

Abstract

Purpose

This paper aims to investigate the film cooling effectiveness (FCE) and mixing flow characteristics of the flat surface ramp model integrated with a compound angled film cooling jet.

Design/methodology/approach

Three-dimensional numerical simulation is performed on a flat surface ramp model with Reynolds Averaged Navier-Stokes approach using a finite volume solver. The tested model has a fixed ramp angle of 24° and a ramp width of two times the diameter of the film cooling hole. The coolant air is injected at 30° along the freestream direction. Three different film hole compound angles oriented to freestream direction at 0°, 90° and 180° were investigated for their performance on-ramp film cooling. The tested blowing ratios (BRs) are in the range of 0.9–2.0.

Findings

The film hole oriented at a compound angle of 180° has improved the area-averaged FCE on the ramp test surface by 86.74% at a mid-BR of 1.4% and 318.75% at higher BRs of 2.0. The 180° film hole compound angle has also produced higher local and spanwise averaged FCE on the ramp test surface.

Originality/value

According to the authors’ knowledge, this study is the first of its kind to investigate the ramp film cooling with a compound angle film cooling hole. The improved ramp model with a 180° film hole compound angle can be effectively applied for the end-wall surfaces of gas turbine film cooling.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 December 2018

Rui Hou, Fengbo Wen, Tao Cui, Xiaolei Tang and Songtao Wang

This study aims to introduce a three-hole cooling unit to improve downstream cooling performance by jet interaction and coalescence at a lower manufacture cost.

Abstract

Purpose

This study aims to introduce a three-hole cooling unit to improve downstream cooling performance by jet interaction and coalescence at a lower manufacture cost.

Design/methodology/approach

A new three-hole cooling unit is proposed. Reynolds-averaged Navier–Stokes (RANS) simulation is performed in the present study. The CFD package ANSYS CFX is used to predict film-cooling effectiveness and flow fields.

Findings

The results show that, at pitch ratio P/D = 3, Case 4 configuration with a round hole upstream and two trenched holes downstream can obtain a high cooling performance at a lower manufacture cost, especially at the higher turbulence. Considering the effect of increased pitch ratio, Case 6 configurations of three staggered trenched holes show a superior downstream cooling performance than Case 4 configurations. Case 6 configurations have the potential of achieving a high cooling performance with a reduced number of holes and less coolant flow.

Research limitations/implications

The application of these cooling units in the turbine passage will be conducted in the future. The more detailed flow field will be simulated by large eddy simulation in the following research.

Practical implications

The round and trenched cooling holes have been proved to be achievable in the manufacture. This combined three-hole cooling unit will give the opportunity to increase turbine inlet temperature further.

Originality/value

Both cooling performance and practical manufacture are taken into account. This cooling scheme will give a superior surface protection on the hot components.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 June 2020

Guohua Zhang, Gongnan Xie and Bengt Ake Sunden

In this study, numerical simulations are performed to compare the adiabatic film cooling effectiveness and reveal the difference of film cooling mechanisms of two models with the…

Abstract

Purpose

In this study, numerical simulations are performed to compare the adiabatic film cooling effectiveness and reveal the difference of film cooling mechanisms of two models with the same geometries and cross-section areas of film holes’ exits at three typical blowing ratios (M = 0.5, 1 and 1.5). The two models are an elliptical model and a cylindrical model with 90° compound angle, respectively.

Design/methodology/approach

Three different cases are considered in this work and the baseline is the model with a cylindrical film hole. The same boundary conditions and a validated turbulence model (realizable k-ε) are adopted for all cases.

Findings

The results show that both the elliptical and cylindrical models with 90° compound angle can enhance the film cooling effectiveness compared with the baseline. However, the elliptical model performs well at lower blowing ratios and in the near region at each blowing ratio because of the wider width of the film hole’s exit. The cylindrical model with 90° compound angle provides better film cooling effectiveness in the further downstream area of the film hole at higher blowing ratio because of the less lift-off and better coolant coverage in the larger x/D region along the mainstream direction.

Originality/value

Overall, it can be concluded that although the elliptical and cylindrical models with 90° compound angle have identical hole exits, the different inlet direction and cross-sectional geometry affect the flow structures when the coolant enters, moves through and exits the hole and finally different film cooling results appear.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 December 2022

Srinivas M.V.V., Mudragada Hari Surya, Devendra Pratap Singh, Pratibha Biswal and Sathi Rajesh Reddy

The purpose of this study is to explore the mist-air film cooling performance on a three-dimensional (3-D) flat plate. In mist-air film cooling technique, a small amount of water…

Abstract

Purpose

The purpose of this study is to explore the mist-air film cooling performance on a three-dimensional (3-D) flat plate. In mist-air film cooling technique, a small amount of water droplets is injected along with the coolant air. The objective is to study the influence of shape of the coolant hole and operating conditions on the cooling effectiveness.

Design/methodology/approach

In this study, 3-D numerical simulations are performed. To simulate the mist-air film cooling over a flat plate, air is considered as a continuous phase and mist is considered as a discrete phase. Turbulence in the flow is accounted using Reynolds averaged Navier–Stokes equation and is modeled using k–e model with enhanced wall treatment.

Findings

The results of this study show that, for cylindrical coolant hole, coolant with 5% mist concentration is not effective for mainstream temperatures above 600 K, whereas for fan-shaped hole, even 2% mist concentration has shown significant impact on cooling effectiveness for temperatures up to 1,000 K. For given mist-air coolant flow conditions, different trend in effectiveness is observed for cylindrical and fan-shaped coolant hole with respect to main stream temperature.

Research limitations/implications

This study is limited to a flat plate geometry with single coolant hole.

Practical implications

The motivation of this study comes from the requirement of high efficiency cooling techniques for cooling of gas turbine blades. This study aims to study the performance of mist-air film cooling at different geometric and operating conditions.

Originality/value

The originality of this study lies in studying the effect of parameters such as mist concentration, droplet size and blowing ratio on cooling performance, particularly at high mainstream temperatures. In addition, a systematic performance comparison is presented between the cylindrical and fan-shaped cooling hole geometries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 23 September 2021

Jian Liu, Mengyao Xu, Wenxiong Xi, Jiawen Song, Shibin Luo and Bengt Ake Sunden

Endwall film cooling protects vane endwall by coolant coverage, especially at the leading edge (LE) region and vane-pressure side (PS) junction region. Strong flow impingement and…

Abstract

Purpose

Endwall film cooling protects vane endwall by coolant coverage, especially at the leading edge (LE) region and vane-pressure side (PS) junction region. Strong flow impingement and complex vortexaa structures on the vane endwall cause difficulties for coolant flows to cover properly. This work aims at a full-scale arrangement of film cooling holes on the endwall which improves coolant efficiency in the LE region and vane-PS junction region.

Design/methodology/approach

The endwall film holes are grouped in four-holes constructal patterns. Three ways of arranging the groups are studied: based on the pressure field, the streamlines or the heat transfer field. The computational analysis is done with the k-ω SST model after validating the turbulence model properly.

Findings

By clustering the film cooling holes in four-holes patterns, the ejection of the coolant flow is stronger. The four-holes constructal patterns also improve the local coolant coverage in the “tough” regions, such as the junction region of the PS and the endwall. The arrangement based on streamlines distribution can effectively improve the coolant coverage and the arrangement based on the heat transfer distribution (HTD) has benefits by reducing high-temperature regions on the endwall.

Originality/value

A full-scale endwall film cooling design is presented considering interactions of different film cooling holes. A comprehensive model validation and mesh independence study are provided. The cooling holes pattern on the endwall is designed as four-holes constructal patterns combined with several arrangement choices, i.e. by pressure, by heat transfer and by streamline distributions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2006

A. Immarigeon and I. Hassan

The present study aims to conduct a numerical investigation of a novel film cooling scheme combining in‐hole impingement cooling and flow turbulators with traditional downstream…

1118

Abstract

Purpose

The present study aims to conduct a numerical investigation of a novel film cooling scheme combining in‐hole impingement cooling and flow turbulators with traditional downstream film cooling, and was originally proposed by Pratt & Whitney Canada for high temperature gas turbine applications.

Design/methodology/approach

Steady‐state simulations were performed and the flow was considered incompressible and turbulent. The CFD package FLUENT 6.1 was used to solve the Navier‐Stokes equations numerically, and the preprocessor, Gambit, was used to generate the required grid.

Findings

It was determined that the proposed scheme geometry can prevent coolant lift‐off much better than standard round holes, since the cooling jet remains attached to the surface at much higher blowing rates, indicating a superior performance for the proposed scheme.

Research limitations/implications

The present study was concerned only with the downstream effectiveness aspect of performance. The performance related to the heat transfer coefficient is a prospective topic for future studies.

Practical implications

Advanced and innovative cooling techniques are essential in order to improve the efficiency and power output of gas turbines. This scheme combines in‐hole impingement cooling and flow turbulators with traditional downstream film cooling for improved cooling capabilities.

Originality/value

This new advanced cooling scheme both combines the advantages of traditional film cooling with those of impingement cooling, and provides greater airfoil protection than traditional film cooling. This study is of value for those interested in gas turbine cooling.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 July 2019

Guohua Zhang, Xueting Liu, Bengt Ake Sundén and Gongnan Xie

This study aims to clarify the mechanism of film hole location at the span-wise direction of an internal cooling channel with crescent ribs on the adiabatic film cooling…

Abstract

Purpose

This study aims to clarify the mechanism of film hole location at the span-wise direction of an internal cooling channel with crescent ribs on the adiabatic film cooling performance, three configurations are designed to observe the effects of the distance between the center of the ellipse and the side wall(Case 1, l = w/2, Case 2, l = w/3 and for Case 3, l = w/4).

Design/methodology/approach

Numerical simulations are conducted under two blowing ratios (i.e. 0.5 and 1) and a fixed cross-flow Reynolds number (Rec = 100,000) with a verified turbulence model.

Findings

It is shown that at low blowing ratio, reducing the distance increases the film cooling effectiveness but keeps the trend of the effectiveness unchanged, while at high blowing ratio, the characteristic is a little bit different in the range of 0 = x/D =10.

Research limitations/implications

These features could be explained by the fact that shrinking the distance between the hole and side wall induces a much smaller reserved region and vortex downstream the ribs and a lower resistance for cooling air entering the film hole. Furthermore, the spiral flow inside the hole is impaired.

Originality/value

As a result, the kidney-shaped vortices originating from the jet flow are weakened, and the target surface can be well covered, resulting in an enhancement of the adiabatic film cooling performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2017

Mojtaba Kazemi Kelishami and Esmail Lakzian

The purpose of this paper is to report the result of a numerical investigation of film cooling performance on a flat plate for finding optimum blowing ratios.

330

Abstract

Purpose

The purpose of this paper is to report the result of a numerical investigation of film cooling performance on a flat plate for finding optimum blowing ratios.

Design/methodology/approach

Steady-state simulations have been performed, and the flow has been considered incompressible. Calculations have been performed with 3D finite-volume method and the k-e turbulence model.

Findings

The adiabatic film cooling effectiveness and the effects of density ratio (DR), blowing ratio (M) and main stream turbulence intensity (Tu), coolant penetration, hole incline and diameter are studied. The temperature and film cooling effectiveness contours, centerline and laterally film cooling effectiveness are presented for these cases. Results show that the cases with smaller Tu have better effectiveness. In the console, using the air coolant and in cylindrical hole cases, using CO2 coolant fluid has higher effectiveness. The results indicated that there is an optimum blowing ratio in the cylindrical hole cases to optimize the performance of new gas turbines.

Research limitations/implications

Investigation of optimum blowing ratio for the convex surfaces and turbine blades is a prospective topic for future studies.

Practical implications

The motivation of this study comes from several industrial applications such as film cooling of gas turbine components. This research gives the best blowing ratio for receiving maximum cooling effectiveness with minimum coolant velocity.

Originality/value

This study optimizes the blowing ratio for film cooling on a flat plate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 December 2023

Weixin Zhang, Zhao Liu, Yu Song, Yixuan Lu and Zhenping Feng

To improve the speed and accuracy of turbine blade film cooling design process, the most advanced deep learning models were introduced into this study to investigate the most…

Abstract

Purpose

To improve the speed and accuracy of turbine blade film cooling design process, the most advanced deep learning models were introduced into this study to investigate the most suitable define for prediction work. This paper aims to create a generative surrogate model that can be applied on multi-objective optimization problems.

Design/methodology/approach

The latest backbone in the field of computer vision (Swin-Transformer, 2021) was introduced and improved as the surrogate function for prediction of the multi-physics field distribution (film cooling effectiveness, pressure, density and velocity). The basic samples were generated by Latin hypercube sampling method and the numerical method adopt for the calculation was validated experimentally at first. The training and testing samples were calculated at experimental conditions. At last, the surrogate model predicted results were verified by experiment in a linear cascade.

Findings

The results indicated that comparing with the Multi-Scale Pix2Pix Model, the Swin-Transformer U-Net model presented higher accuracy and computing speed on the prediction of contour results. The computation time for each step of the Swin-Transformer U-Net model is one-third of the original model, especially in the case of multi-physics field prediction. The correlation index reached more than 99.2% and the first-order error was lower than 0.3% for multi-physics field. The predictions of the data-driven surrogate model are consistent with the predictions of the computational fluid dynamics results, and both are very close to the experimental results. The application of the Swin-Transformer model on enlarging the different structure samples will reduce the cost of numerical calculations as well as experiments.

Research limitations/implications

The number of U-Net layers and sample scales has a proper relationship according to equation (8). Too many layers of U-Net will lead to unnecessary nonlinear variation, whereas too few layers will lead to insufficient feature extraction. In the case of Swin-Transformer U-Net model, incorrect number of U-Net layer will reduce the prediction accuracy. The multi-scale Pix2Pix model owns higher accuracy in predicting a single physical field, but the calculation speed is too slow. The Swin-Transformer model is fast in prediction and training (nearly three times faster than multi Pix2Pix model), but the predicted contours have more noise. The neural network predicted results and numerical calculations are consistent with the experimental distribution.

Originality/value

This paper creates a generative surrogate model that can be applied on multi-objective optimization problems. The generative adversarial networks using new backbone is chosen to adjust the output from single contour to multi-physics fields, which will generate more results simultaneously than traditional surrogate models and reduce the time-cost. And it is more applicable to multi-objective spatial optimization algorithms. The Swin-Transformer surrogate model is three times faster to computation speed than the Multi Pix2Pix model. In the prediction results of multi-physics fields, the prediction results of the Swin-Transformer model are more accurate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1975

R.A. NICHOLSON

IN any investigation of a problem or complaint involving petroleum products in the Industrial field, at least three standard answers will be available to the investigator without…

Abstract

IN any investigation of a problem or complaint involving petroleum products in the Industrial field, at least three standard answers will be available to the investigator without the necessity to first ask the questions. These are:

Details

Industrial Lubrication and Tribology, vol. 27 no. 3
Type: Research Article
ISSN: 0036-8792

1 – 10 of 99