Search results

1 – 2 of 2
Article
Publication date: 10 June 2021

Golam Mortuja Sarkar, Suman Sarkar and Bikash Sahoo

This paper aims to theoretically and numerically investigate the steady two-dimensional (2D) Hiemenz flow with heat transfer of Reiner-Rivlin fluid over a linearly…

Abstract

Purpose

This paper aims to theoretically and numerically investigate the steady two-dimensional (2D) Hiemenz flow with heat transfer of Reiner-Rivlin fluid over a linearly stretching/shrinking sheet.

Design/methodology/approach

The Navier–Stokes equations are transformed into self-similar equations using appropriate similarity transformations and then solved numerically by using shooting technique. A simple but effective mathematical analysis has been used to prove the existence of a solution for stretching case (λ> 0). Moreover, an attempt has been laid to carry the asymptotic solution behavior for large stretching. The obtained asymptotic solutions are compared with direct numerical solutions, and the comparison is quite remarkable.

Findings

It is observed that the self-similar equations exhibit dual solutions within the range [λc, −1] of shrinking parameter λ, where λc is the turning point from where the dual solutions bifurcate. Unique solution is found for all stretching case (λ > 0). It is noticed that the effects of cross-viscous parameter L and shrinking parameter λ on velocity and thermal fields show opposite character in the dual solution branches. Thus, a linear temporal stability analysis is performed to determine the basic feasible solution. The stability analysis is based on the sign of the smallest eigenvalue, where positive or negative sign leading to a stable or unstable solution. The stability analysis reveals that the first solution is stable that describes the main flow. Increase in cross-viscous parameter L resulting in a significant increment in skin friction coefficient, local Nusselt number and dual solutions domain.

Originality/value

This work’s originality is to examine the combined effects of cross-viscous parameter and stretching/shrinking parameter on skin friction coefficient, local Nusselt number, velocity and temperature profiles of Hiemenz flow over a stretching/shrinking sheet. Although many studies on viscous fluid and nanofluid have been investigated in this field, there are still limited discoveries on non-Newtonian fluids. The obtained results can be used as a benchmark for future studies of higher-grade non-Newtonian flows with several physical aspects. All the generated results are claimed to be novel and have not been published elsewhere.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 September 2021

Abdelraheem M. Aly, Noura Alsedais and Hakan F. Oztop

The purpose of this study is to use the incompressible smoothed particle hydrodynamics method to examine the influences of a magnetic field on the double-diffusive convection…

Abstract

Purpose

The purpose of this study is to use the incompressible smoothed particle hydrodynamics method to examine the influences of a magnetic field on the double-diffusive convection caused by a rotating circular cylinder with paddles within a square cavity filled by a nanofluid.

Design/methodology/approach

The cavity is saturated by two wavy layers of non-Darcy porous media with a variable amplitude parameter. The embedded circular cylinder with paddles carrying T_h and C_h is rotating around the cavity center by a uniform circular velocity.

Findings

The lineaments of nanofluid velocity and convective flow, as well as the mean of Nusselt and Sherwood numbers, are represented below the variations on the frequency parameter, amplitude parameter of the wavy porous layers, Darcy parameter, nanoparticles parameter, Hartmann number and Ryleigh number. The performed simulations showed the role of paddles mounted on circular cylinders for enhancing the transmission of heat and mass within a cavity. The wavy porous layers at the lower Darcy parameter are playing as a blockage for the nanofluid flow within the porous area. Increasing the concentration of the nanoparticles to 6% reduces the maximum flow speed by 8.97% and maximum streamlines |ψ|max by 10.76%. Increasing Hartmann number to 100 reduces the maximum flow speed by 65.83% and |ψ|max by 75.54%.

Originality/value

The novelty of this work is to examine the effects of an inclined magnetic field and rotating novel shape of a circular cylinder with paddles on the transmission of heat/mass in the interior of a nanofluid-filled cavity saturated by undulating porous medium layers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2