Search results

1 – 10 of 327
Article
Publication date: 6 December 2018

Davood Aliakbarzadeh Kashani, Saeed Dinarvand, Ioan Pop and Tasawar Hayat

The purpose of this paper is to numerically study the unsteady double-diffusive mixed convective stagnation-point flow of a water-based nanofluid accompanied with one salt past a…

Abstract

Purpose

The purpose of this paper is to numerically study the unsteady double-diffusive mixed convective stagnation-point flow of a water-based nanofluid accompanied with one salt past a vertical flat plate. The effects of Brownian motion and thermophoresis parameters are also introduced through Buongiorno’s two-component nonhomogeneous equilibrium model in the governing equations.

Design/methodology/approach

In the present explanation of double-diffusive mixed convective model, there are four boundary layers entitled: velocity, thermal, solutal concentration and nanoparticle concentration. The resulting basic equations are solved numerically via an efficient Runge–Kutta fourth-order method with shooting technique after the governing nonlinear partial differential equations are converted into a system of nonlinear ordinary differential equations by the use of similarity transformations.

Findings

To avail the physical insight of problem, the effects of the mixed convection parameter, unsteadiness parameter and salt/nanoparticle parameters on the boundary layers behavior are investigated. Moreover, four possible types of diffusion problems entitled: double-diffusive nanofluid (DDNF), double-diffusive regular fluid (DDRF), mono-diffusive nanofluid (MDNF) and mono-diffusive regular fluid (MDRF) are considered to analyze and compare them in concepts of heat and mass transfer.

Originality/value

The results demonstrate that, for a regular fluid, without nanoparticle and salt (MDRF), the dimensionless heat transfer rate is smaller than other diffusion cases. As we include nanoparticle and salt (DDNF), the rate of heat transfer increases due to an increase in thermal conductivity and rate of diffusion of salt. Moreover, it is observed that the highest heat transfer rate is obtained for the situation that the thermophoretic effect of nanoparticles is negligible. Besides, the heat transfer rate enhances with the increase in the regular double-diffusive buoyancy parameter of salt.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 April 2017

Gauri Shanker Seth, Rohit Sharma, Manoj Kumar Mishra and Ali J. Chamkha

The purpose of this paper is to assess steady, two-dimensional natural convection flow of a viscoelastic, incompressible, electrically conducting and optically thick…

Abstract

Purpose

The purpose of this paper is to assess steady, two-dimensional natural convection flow of a viscoelastic, incompressible, electrically conducting and optically thick heat-radiating nanofluid over a linearly stretching sheet in the presence of uniform transverse magnetic field taking Dufour and Soret effects into account.

Design/methodology/approach

The governing boundary layer equations are transformed into a set of highly non-linear ordinary differential equations using suitable similarity transforms. Finite element method is used to solve this boundary value problem. Effects of pertinent flow parameters on the velocity, temperature, solutal concentration and nanoparticle concentration are described graphically. Also, effects of pertinent flow parameters on the shear stress, rate of heat transfer, rate of solutal concentration and rate of nanoparticle concentration at the sheet are discussed with the help of numerical values presented in graphical form. All numerical results for mono-diffusive nanofluid are compared with those of double-diffusive nanofluid.

Findings

Numerical results obtained in this paper are compared with earlier published results and are found to be in excellent agreement. Viscoelasticity, magnetic field and nanoparticle buoyancy parameter tend to enhance the wall velocity gradient, whereas thermal buoyancy force has a reverse effect on it. Radiation, Brownian and thermophoretic diffusions tend to reduce wall temperature gradient, whereas viscoelasticity has a reverse effect on it. Nanofluid Lewis number tends to enhance wall nanoparticle concentration gradient.

Originality/value

Study of this problem may find applications in engineering and biomedical sciences,e.g. in cooling and process industries and in cancer therapy.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 January 2010

J.W. Peterson, B.T. Murray and G.F. Carey

The purpose of this paper is to consider double‐diffusive convection in a heated porous medium saturated with a fluid. Of particular interest is the case where the fluid has a…

Abstract

Purpose

The purpose of this paper is to consider double‐diffusive convection in a heated porous medium saturated with a fluid. Of particular interest is the case where the fluid has a stabilizing concentration gradient and small diffusivity.

Design/methodology/approach

A fully‐coupled stabilized finite element scheme and adaptive mesh refinement (AMR) methodology are introduced to solve the resulting coupled multiphysics application and resolve fine scale solution features. The code is written on top of the open source finite element library LibMesh, and is suitable for parallel, high‐performance simulations of large‐scale problems.

Findings

The stabilized adaptive finite element scheme is used to compute steady and unsteady onset of convection in a generalized Horton‐Rogers‐Lapwood problem in both two and three‐dimensional domains. A detailed study confirming the applicability of AMR in obtaining the predicted dependence of solutal Nusselt number on Lewis number is given. A semi‐permeable barrier version of the generalized HRL problem is also studied and is believed to present an interesting benchmark for AMR codes owing to the different boundary and internal layers present in the problem. Finally, some representative adaptive results in a complex 3D heated‐pipe geometry are presented.

Originality/value

This work demonstrates the feasibility of stabilized, adaptive finite element schemes for computing simple double‐diffusive flow models, and it represents an easily‐generalizable starting point for more complex calculations since it is based on a highly‐general finite element library. The complementary nature of h‐adaptivity and stabilized finite element techniques for this class of problem is demonstrated using particularly simple error indicators and stabilization parameters. Finally, an interesting double‐diffusive convection benchmark problem having a semi‐permeable barrier is suggested.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 October 2019

Bidemi Olumide Falodun and Adeola John Omowaye

This paper aims to address the problem of double-diffusive magnetohydrodynamics (MHD) non-Darcy convective flow of heat and mass transfer over a stretching sheet embedded in a…

Abstract

Purpose

This paper aims to address the problem of double-diffusive magnetohydrodynamics (MHD) non-Darcy convective flow of heat and mass transfer over a stretching sheet embedded in a thermally-stratified porous medium. The controlling parameters such as chemical reaction parameter, permeability parameter, etc., are extensively discussed and illustrated in this paper.

Design/methodology/approach

With the help of appropriate similarity variables, the governing partial differential equations are converted into ordinary differential equations. The transformed equations are solved using the spectral homotopy analysis method (SHAM). SHAM is a numerical method, which uses Chebyshev pseudospectral and homotopy analysis method in solving science and engineering problems.

Findings

The effects of all controlling parameters are presented using graphical representations. The results revealed that the applied magnetic field in the transverse direction to the flow gives rise to a resistive force called Lorentz. This force tends to reduce the flow of an electrically conducting fluid in the problem of heat and mass transfer. As a result, the fluid velocity reduces in the boundary layer. Also, the suction increases the velocity, temperature, and concentration of the fluid, respectively. The present results can be used in complex problems dealing with double-diffusive MHD non-Darcy convective flow of heat and mass transfer.

Originality/value

The uniqueness of this paper is the examination of double-diffusive MHD non-Darcy convective flow of heat and mass transfer. It is considered over a stretching sheet embedded in a thermally-stratified porous medium. To the best of the knowledge, a problem of this type has not been considered in the past. A novel method called SHAM is used to solve this modelled problem. The novelty of this method is its accuracy and fastness in computation.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 June 2016

Chahinez Ghernoug, Mahfoud Djezzar, Hassane Naji and Abdelkarim Bouras

The purpose of this paper is to numerically study the double-diffusive natural convection within an eccentric horizontal cylindrical annulus filled with a Newtonian fluid. The…

220

Abstract

Purpose

The purpose of this paper is to numerically study the double-diffusive natural convection within an eccentric horizontal cylindrical annulus filled with a Newtonian fluid. The annulus walls are maintained at uniform temperatures and concentrations so as to induce aiding thermal and mass buoyancy forces within the fluid. For that, this simulation span a moderate range of thermal Rayleigh number (100RaT100,000), Lewis (0.1Le10), buoyancy ratio (0N5) and Prandtl number (Pr=0.71) to examine their effects on flow motion and heat and mass transfers.

Design/methodology/approach

A finite volume method in conjunction with the successive under-relaxation algorithm has been developed to solve the bipolar equations. These are written in dimensionless form in terms of vorticity, stream function, temperature and concentration. Beforehand, the implemented computer code has been validated through already published findings in the literature. The isotherms, streamlines and iso-concentrations are exhibited for various values of Rayleigh and Lewis numbers, and buoyancy ratio. In addition, heat and mass transfer rates in the annulus are translated in terms of Nusslet and Sherwood numbers along the enclosure’s sides.

Findings

It is observed that, for the range of parameters considered here, the results show that the average Sherwood number increases with, while the average Nusselt number slightly dips as the Lewis number increases. It is also found that, under the convective mode, the local Nusselt number (or Sherwood) increases with the buoyancy ratio. Likewise, according to Lewis number’s value, the flow pattern is either symmetric and stable or asymmetric and random. Besides that, the heat transfer is transiting from a conductive mode to a convective mode with increasing the thermal Rayleigh number, and the flow structure and the rates of heat and mass transfer are significantly influenced by this parameter.

Research limitations/implications

The range of the Rayleigh number considered here covers only the laminar case, with some constant parameters, namely the Prandtl number (Pr = 0.71), and the tilt angle (α=90°). The analysis here is only valid for steady, two-dimensional, laminar and aiding flow within an eccentric horizontal cylindrical annulus. This motivates further investigations involving other relevant parameters as N (opposite flows), Ra, Pr, Le, the eccentricity, the tilt angle, etc.

Practical implications

An original framework for handling the double-diffusive natural convection within annuli is available, based on the bipolar equations. In addition, the achievement of this work could help researchers design thermal systems supported by annulus passages. Applications of the results can be of value in various arrangements such as storage of liquefied gases, electronic cable cooling systems, nuclear reactors, underground disposal of nuclear wastes, manifolds of solar energy collectors, etc.

Originality/value

Given the geometry concerned, the bipolar coordinates have been used to set the inner and outer walls boundary conditions properly without interpolation. In addition, since studies on double-diffusive natural convection in annuli are lacking, the obtained results may be of interest to handle other configurations (e.g., elliptical-shaped speakers) with other boundary conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2023

Kashif Irshad, Amjad Ali Pasha, Mohammed K. Al Mesfer, Mohd Danish, Manoj Kumar Nayak, Ali Chamkha and Ahmed M. Galal

The entropy and thermal behavior analyses of non-Newtonian nanofluid double-diffusive natural convection inside complex domains may captivate a bunch of scholars’ attention…

Abstract

Purpose

The entropy and thermal behavior analyses of non-Newtonian nanofluid double-diffusive natural convection inside complex domains may captivate a bunch of scholars’ attention because of the potential utilizations that they possess in modern industries, for example, heat exchangers, solar energy collectors and cooling of electronic apparatuses. This study aims to investigate the second law and thermal behavior of non-Newtonian double-diffusive natural convection (DDNC) of Al2O3-H2O nanofluid within a C-shaped cavity emplacing two hot baffles and impacted by a magnetic field.

Design/methodology/approach

For the governing equations of the complicated and practical system with all considered parameters to be solved via a formidable numerical approach, the finite element method acts as an approach to achieving the desired solution. This method allows us to gain a detailed solution to the studied geometry.

Findings

This investigation has been executed for the considered parameters of range, such as power-law index, baffle length, Lewis number, buoyancy ratio, Hartmann number and Rayleigh number. The main results reveal that isothermal and concentration lines are significantly more distorted, indicating intensified concentration and temperature distributions because of the growth of baffle length (L). Nuave decreases by 8.4% and 0.8% while it enhances by 49.86% and 33.87%, respectively, because of growth in the L from 0.1 to 0.2 and 0.2 to 0.3.

Originality/value

Such a comprehensive study on the second law and thermal behavior of DDNC of Al2O3-H2O nanofluid within a C-shaped cavity emplacing two hot baffles and impacted by magnetic field has not yet been carried out.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2017

B.J. Gireesha, M. Archana, Prasannakumara B.C., R.S. Reddy Gorla and Oluwole Daniel Makinde

This paper aims to deal with the study of heat and mass transfer on double-diffusive three-dimensional hydromagnetic boundary layer flow of an electrically conducting Casson…

Abstract

Purpose

This paper aims to deal with the study of heat and mass transfer on double-diffusive three-dimensional hydromagnetic boundary layer flow of an electrically conducting Casson nanofluid over a stretching surface. The combined effects of nonlinear thermal radiation, magnetic field, buoyancy forces, thermophoresis and Brownian motion are taken into consideration with convective boundary conditions.

Design/methodology/approach

Similarity transformations are used to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations were numerically solved using Runge–Kutta–Fehlberg fourth-fifth-order method along with shooting technique.

Findings

The impact of several existing physical parameters such as Casson parameter, mixed convection parameter, regular buoyancy ratio parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, temperature ratio parameter on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that the solutal component increases for Dufour Lewis number, whereas it decreases for nanofluid Lewis number. Moreover, velocity profiles decrease for Casson parameter, while the Nusselt number increases for Biot number, radiation and temperature ratio parameter.

Originality/value

This paper is a new work related to three-dimensional double-diffusive flow of Casson nanofluid with buoyancy and nonlinear thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 October 2016

Gholamreza Kefayati

The thermal-diffusion (Soret) and the diffusion-thermo (Dufour) effects play a crucial role in double diffusive mixed convection in a lid-driven cavity; but they have not been…

Abstract

Purpose

The thermal-diffusion (Soret) and the diffusion-thermo (Dufour) effects play a crucial role in double diffusive mixed convection in a lid-driven cavity; but they have not been studied properly by researchers. The purpose of this paper is to investigate effects of Soret and Dufour parameters on double diffusive laminar mixed convection of shear-thinning and Newtonian fluids in a two-sided lid-driven cavity.

Design/methodology/approach

Finite Difference Lattice Boltzmann method (FDLBM) has been applied to solve the complex problem. This study has been conducted for the certain pertinent parameters of Richardson number (Ri=0.00062-1), power-law index (n=0.2-1), Soret parameter (Sr=−5-5) as Dufour number effects have been investigated from Dr=−5 to 5 at Buoyancy ratio of N=1 and Lewis number of Le=5.

Findings

Results indicate that the augmentation of Richardson number causes heat and mass transfer to decrease. The fall of the power-law index declines heat and mass transfer at Ri=0.00062 and 0.01 in various Dufour and Soret parameters. At Ri=1, the heat and mass transfer rise with the increment of power-law index for Dr=0 and Sr=0. The least effect of power-law index on heat and mass transfer among the studied Richardson numbers was observed at Ri=1. The positive Dufour numbers augment the heat transfer gradually as the positive Soret numbers enhance the mass transfer. The Dr=−5 and Sr=−5 provokes the negative average Nusselt and Sherwood numbers, respectively, to be generated. The least magnitude of the average Nusselt and Sherwood numbers were obtained at Dr=−1 and Sr=−1, respectively.

Originality/value

Soret and Dufour effects in double diffusive mixed convection has not been studied in a lid-driven cavity. In addition. this study has been conducted also for shear-thinning fluids.

Details

Engineering Computations, vol. 33 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 June 2020

Maria Anncy, Thadathil Varghese Joseph and Subbarama Pranesh

The problem aims to find the effects of coupled cross-diffusion in micropolar fluid oversaturated porous medium, subjected to Double-Diffusive Chandrasekhar convection.

Abstract

Purpose

The problem aims to find the effects of coupled cross-diffusion in micropolar fluid oversaturated porous medium, subjected to Double-Diffusive Chandrasekhar convection.

Design/methodology/approach

Normal mode and perturbation technique have been employed to determine the critical Rayleigh number. Non-linear analysis is carried out by deriving the Lorenz equations using truncated Fourier series representation. Heat and Mass transport are quantified by Nusselt and Sherwood numbers, respectively.

Findings

Analysis related to the effects of various parameters is plotted, and the results for the same are interpreted. It is observed from the results that the Dufour parameter and Soret parameter have an opposite influence on the system of cross-diffusion.

Originality/value

The effect of the magnetic field on the onset of double-diffusive convection in a porous medium coupled with cross-diffusion in a micropolar fluid is studied for the first time.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 April 2017

Mourad Moderres, Said Abboudi, Malika Ihdene, Sofiane Aberkane and Abderahmane Ghezal

Double-diffusive convection within a tri-dimensional in a horizontal annulus partially filled with a fluid-saturated porous medium is numerically investigated. The aim of this…

Abstract

Purpose

Double-diffusive convection within a tri-dimensional in a horizontal annulus partially filled with a fluid-saturated porous medium is numerically investigated. The aim of this work is to understand the effects of a source of heat and solute on the fluid flow and heat and mass transfer rates.

Design/methodology/approach

In the formulation of the problem, the Darcy–Brinkman–Forchheimer model is adopted to the fluid flow in the porous annulus. The laminar flow regime is considered under steady state conditions. Moreover, the transport equation for continuity, momentum, energy and mass transfer are solved using the Patankar–Spalding technique.

Findings

Through this investigation, the predicted results for both average Nusselt and Sherwood numbers were correlated in terms of Lewis number, thermal Grashof number and buoyancy ration. A comparison was made with the published results and a good agreement was found.

Originality/value

The paper’s results are validated by favorable comparisons with previously published results. The results of the problem are presented in graphical forms and discussed. This paper aims to study the behavior of the flow structure and heat transfer and mass for different parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 327