Search results

1 – 10 of over 5000
Book part
Publication date: 21 November 2014

Jin Seo Cho and Halbert White

We provide a new characterization of the equality of two positive-definite matrices A and B, and we use this to propose several new computationally convenient statistical tests…

Abstract

We provide a new characterization of the equality of two positive-definite matrices A and B, and we use this to propose several new computationally convenient statistical tests for the equality of two unknown positive-definite matrices. Our primary focus is on testing the information matrix equality (e.g. White, 1982, 1994). We characterize the asymptotic behavior of our new trace-determinant information matrix test statistics under the null and the alternative and investigate their finite-sample performance for a variety of models: linear regression, exponential duration, probit, and Tobit. The parametric bootstrap suggested by Horowitz (1994) delivers critical values that provide admirable level behavior, even in samples as small as n = 50. Our new tests often have better power than the parametric-bootstrap version of the traditional IMT; when they do not, they nevertheless perform respectably.

Details

Essays in Honor of Peter C. B. Phillips
Type: Book
ISBN: 978-1-78441-183-1

Keywords

Article
Publication date: 1 March 2005

M. Er‐raki, M. Hasnaoui, A. Amahmid and M. Bourich

Thermodiffusion or Soret effect is a phenomenon that can be encountered in many applications. However only little is known about this phenomenon, particularly in the case of…

Abstract

Purpose

Thermodiffusion or Soret effect is a phenomenon that can be encountered in many applications. However only little is known about this phenomenon, particularly in the case of sparsely packed media (i.e. Brinkman media). The aim of this paper is to study numerically and analytically the effect of thermodiffusion on the onset of natural convection in a horizontal Brinkman porous layer with a free‐stress upper boundary.

Design/methodology/approach

The study is performed by solving numerically the governing equations for different combinations of the governing parameters. An analytical solution is also developed in the case of a shallow layer using the approximation of a parallel flow in the core region to predict the critical conditions corresponding to the onset stationary, subcritical and Hopf convection.

Findings

The results obtained show that, in the presence of Soret effect, the numerical and analytical solutions agree well for long enough layers. The thermodiffusion parameter can affect considerably the supercritical and sub‐critical Rayleigh numbers and heat and mass transfer characteristics in the layer. It is also shown that the plane Le‐φ can be divided into three main regions with specific and different behaviours.

Originality/value

The Soret effect can play a stabilizing or a destabilizing role and this, depending on the sign of the separation parameter, φ.

Details

Engineering Computations, vol. 22 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 24 March 2006

Ngai Hang Chan and Wilfredo Palma

Since the seminal works by Granger and Joyeux (1980) and Hosking (1981), estimations of long-memory time series models have been receiving considerable attention and a number of…

Abstract

Since the seminal works by Granger and Joyeux (1980) and Hosking (1981), estimations of long-memory time series models have been receiving considerable attention and a number of parameter estimation procedures have been proposed. This paper gives an overview of this plethora of methodologies with special focus on likelihood-based techniques. Broadly speaking, likelihood-based techniques can be classified into the following categories: the exact maximum likelihood (ML) estimation (Sowell, 1992; Dahlhaus, 1989), ML estimates based on autoregressive approximations (Granger & Joyeux, 1980; Li & McLeod, 1986), Whittle estimates (Fox & Taqqu, 1986; Giraitis & Surgailis, 1990), Whittle estimates with autoregressive truncation (Beran, 1994a), approximate estimates based on the Durbin–Levinson algorithm (Haslett & Raftery, 1989), state-space-based maximum likelihood estimates for ARFIMA models (Chan & Palma, 1998), and estimation of stochastic volatility models (Ghysels, Harvey, & Renault, 1996; Breidt, Crato, & de Lima, 1998; Chan & Petris, 2000) among others. Given the diversified applications of these techniques in different areas, this review aims at providing a succinct survey of these methodologies as well as an overview of important related problems such as the ML estimation with missing data (Palma & Chan, 1997), influence of subsets of observations on estimates and the estimation of seasonal long-memory models (Palma & Chan, 2005). Performances and asymptotic properties of these techniques are compared and examined. Inter-connections and finite sample performances among these procedures are studied. Finally, applications to financial time series of these methodologies are discussed.

Details

Econometric Analysis of Financial and Economic Time Series
Type: Book
ISBN: 978-1-84950-388-4

Article
Publication date: 22 March 2011

K. Nilakantan, Jayaram K. Sankaran and B.G. Raghavendra

The purpose of this paper is to construct a model of hierarchical manpower systems which follow proportionality policies in recruitment and promotion of their staff, ostensibly…

3202

Abstract

Purpose

The purpose of this paper is to construct a model of hierarchical manpower systems which follow proportionality policies in recruitment and promotion of their staff, ostensibly with a view to safeguard the career interests of their existing employees.

Design/methodology/approach

The manpower systems are modeled as Markov systems, and their inherent characteristics and long‐term behavior are studied.

Findings

Significantly it is shown that such proportionality systems do not compromise on flexibility in the long term, and can also provide an additional means of controlling the blend of manpower in the system. The theoretical results were tested with real‐world data, and a good degree of conformity was observed between the theoretical predictions and the actually observed behaviour.

Practical implications

The model can also be applied to organizations which outsource a part of their work, the outsource workforce being notionally being considered as recruits to the system.

Originality/value

Outsourcing of work is being practiced on an ever‐increasing scale nowadays, and becoming, at times, even controversial, and as a consequence, an increasing number of organizations are resorting to protectionist policies; the model in this paper provides a theoretical framework in which to view and analyze this phenomenon.

Details

Journal of Modelling in Management, vol. 6 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Book part
Publication date: 15 April 2020

Jianning Kong, Peter C. B. Phillips and Donggyu Sul

Measurement of diminishing or divergent cross section dispersion in a panel plays an important role in the assessment of convergence or divergence over time in key economic…

Abstract

Measurement of diminishing or divergent cross section dispersion in a panel plays an important role in the assessment of convergence or divergence over time in key economic indicators. Econometric methods, known as weak σ-convergence tests, have recently been developed (Kong, Phillips, & Sul, 2019) to evaluate such trends in dispersion in panel data using simple linear trend regressions. To achieve generality in applications, these tests rely on heteroskedastic and autocorrelation consistent (HAC) variance estimates. The present chapter examines the behavior of these convergence tests when heteroskedastic and autocorrelation robust (HAR) variance estimates using fixed-b methods are employed instead of HAC estimates. Asymptotic theory for both HAC and HAR convergence tests is derived and numerical simulations are used to assess performance in null (no convergence) and alternative (convergence) cases. While the use of HAR statistics tends to reduce size distortion, as has been found in earlier analytic and numerical research, use of HAR estimates in nonparametric standardization leads to significant power differences asymptotically, which are reflected in finite sample performance in numerical exercises. The explanation is that weak σ-convergence tests rely on intentionally misspecified linear trend regression formulations of unknown trend decay functions that model convergence behavior rather than regressions with correctly specified trend decay functions. Some new results on the use of HAR inference with trending regressors are derived and an empirical application to assess diminishing variation in US State unemployment rates is included.

Article
Publication date: 8 August 2016

Vladimir Kobelev

The purpose of this paper is to introduce the double-periodic lattice, composed of bending-resistant fibers. The essence of the model is that the filaments are of infinite length…

Abstract

Purpose

The purpose of this paper is to introduce the double-periodic lattice, composed of bending-resistant fibers. The essence of the model is that the filaments are of infinite length and withstand tension and bending. The constitutive equations of the lattice in discrete and differential formulations are derived. Two complementary systems of loads, which cause different deformation two orthogonal families of fibers, occur in the lattice. The fracture behavior of the material containing a semi-infinite crack is investigated. The crack problem reduces to the exactly solvable Riemann-Hilbert problem. The solution demonstrates that the behavior of material cardinally depends upon the tension in the orthogonal family of fibers. If tension in fibers exists, opening of the crack under action of loads in two-dimensional lattice is similar to those in elastic solid. In the absence of tension, contrarily, there is a finite angle between edges at the crack tip.

Design/methodology/approach

The description of stress state in the crack vicinity is reduced to the solution of mixed boundary value problem for simultaneous difference equations. In terms of Fourier images for unknown functions the problem is equivalent to a certain Riemann-Hilbert problem.

Findings

The analytical solution of the problem shows that fracture behavior of the material depends upon the presence of stabilizing tension in fibers, parallel to crack direction. In the presence of tension in parallel fibers fracture character of two-dimensional lattice is similar to behavior of elastic solid. In this case the condition of crack grows can be formulated in terms of critical stress intensity factor. Otherwise, in the absence of stabilizing tension, the crack surfaces form a finite angle at the tip.

Research limitations/implications

Linear behavior of fibers until rupture. Small deflections. Perfect two-dimensional lattice.

Practical implications

The model provides exact analytical estimation of stresses on the crack tip as the function of fibers’ stiffness.

Originality/value

The model is the extension of known lattice models, taking into account the semi-infinite crack in the lattice. This is the first known closed form solution for an infinite lattice model with the crack.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Book part
Publication date: 24 April 2023

Nikolay Gospodinov, Alex Maynard and Elena Pesavento

It is widely documented that while contemporaneous spot and forward financial prices trace each other extremely closely, their difference is often highly persistent and the…

Abstract

It is widely documented that while contemporaneous spot and forward financial prices trace each other extremely closely, their difference is often highly persistent and the conventional cointegration tests may suggest lack of cointegration. This chapter studies the possibility of having cointegrated errors that are characterized simultaneously by high persistence (near-unit root behavior) and very small (near zero) variance. The proposed dual parameterization induces the cointegration error process to be stochastically bounded which prevents the variables in the cointegrating system from drifting apart over a reasonably long horizon. More specifically, this chapter develops the appropriate asymptotic theory (rate of convergence and asymptotic distribution) for the estimators in unconditional and conditional vector error correction models (VECM) when the error correction term is parameterized as a dampened near-unit root process (local-to-unity process with local-to-zero variance). The important differences in the limiting behavior of the estimators and their implications for empirical analysis are discussed. Simulation results and an empirical analysis of the forward premium regressions are also provided.

Book part
Publication date: 24 April 2023

Peter C. B. Phillips

The discrete Fourier transform (dft) of a fractional process is studied. An exact representation of the dft is given in terms of the component data, leading to the frequency…

Abstract

The discrete Fourier transform (dft) of a fractional process is studied. An exact representation of the dft is given in terms of the component data, leading to the frequency domain form of the model for a fractional process. This representation is particularly useful in analyzing the asymptotic behavior of the dft and periodogram in the nonstationary case when the memory parameter d12. Various asymptotic approximations are established including some new hypergeometric function representations that are of independent interest. It is shown that smoothed periodogram spectral estimates remain consistent for frequencies away from the origin in the nonstationary case provided the memory parameter d < 1. When d = 1, the spectral estimates are inconsistent and converge weakly to random variates. Applications of the theory to log periodogram regression and local Whittle estimation of the memory parameter are discussed and some modified versions of these procedures are suggested for nonstationary cases.

Article
Publication date: 1 February 1989

Peter SZMOLYAN

The singular perturbation character of the semiconductor device problem is well known by now. Various results on the structure of solutions (i.e. existence of spatial and temporal…

Abstract

The singular perturbation character of the semiconductor device problem is well known by now. Various results on the structure of solutions (i.e. existence of spatial and temporal layers) have been obtained by means of singular perturbation theory. We use a rescaled form of the equations, which describes the evolution on the fast time scale, and discuss the asymptotic behavior of this system, i.e. its relationship to the initial layer problem, to the corresponding stationary problem and to the reduced problem. We show that the transient semiconductor problem fits in the framework of ‘fast reaction‐slow diffusion’ type equations, which are known from the analysis of chemical reacting systems. We use a multiple time scale expansion to give a new ‘dynamical’ derivation of the reduced problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 8 no. 2
Type: Research Article
ISSN: 0332-1649

Open Access
Article
Publication date: 14 December 2021

Phillip Baumann and Kevin Sturm

The goal of this paper is to give a comprehensive and short review on how to compute the first- and second-order topological derivatives and potentially higher-order topological…

Abstract

Purpose

The goal of this paper is to give a comprehensive and short review on how to compute the first- and second-order topological derivatives and potentially higher-order topological derivatives for partial differential equation (PDE) constrained shape functionals.

Design/methodology/approach

The authors employ the adjoint and averaged adjoint variable within the Lagrangian framework and compare three different adjoint-based methods to compute higher-order topological derivatives. To illustrate the methodology proposed in this paper, the authors then apply the methods to a linear elasticity model.

Findings

The authors compute the first- and second-order topological derivatives of the linear elasticity model for various shape functionals in dimension two and three using Amstutz' method, the averaged adjoint method and Delfour's method.

Originality/value

In contrast to other contributions regarding this subject, the authors not only compute the first- and second-order topological derivatives, but additionally give some insight on various methods and compare their applicability and efficiency with respect to the underlying problem formulation.

Details

Engineering Computations, vol. 39 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 5000