Search results

1 – 10 of 15
Article
Publication date: 20 November 2023

Yingxiang Zhao, Junde Guo, Xiaoni Yan, Shan Du, Min Gong, Biao Sun, Junwen Shi and Wen Deng

The purpose of this paper is to investigate the friction and wear mechanisms in copper-based self-lubricating composites with MoS2 as the lubricating phase, which provides a…

Abstract

Purpose

The purpose of this paper is to investigate the friction and wear mechanisms in copper-based self-lubricating composites with MoS2 as the lubricating phase, which provides a theoretical basis for subsequent research on high-performance copper-based self-lubricating materials.

Design/methodology/approach

Friction tests were performed at a speed of 100 r/min, a load of 10 N, a friction radius of 5 mm and a sliding speed of 30 min. Friction experiments were carried out at RT-500°C. The phase composition of the samples was characterized by X-ray diffraction of Cu Ka radiation, and the microstructure, morphology and elemental distribution were characterized by scanning electron microscopy and energy dispersive spectroscopy. Reactants and valences formed during the wear process were analyzed by X-ray photoelectron spectroscopy.

Findings

The addition of MoS2 can effectively improve friction-reducing and anti-wear action of the matrix, which is beneficial to form a lubricating film on the sliding track. After analyzing different changing mechanism of the sliding tracks, the oxides and sulfides of MoS2, MoO2, Cu2O, CuO and Ni(OH)2 were detected to form a synergetic lubricating film on the sliding track, which is responsible for the excellent tribological properties from room to elevated temperature.

Research limitations/implications

For self-lubrication Cu–Sn–Ni–MoS2 material in engineering field, there are still few available references on high-temperature application.

Practical implications

This paper provides a theoretical basis for the following research on copper-based self-lubricating materials with high performance.

Originality/value

With this statement, the authors hereby certify that the manuscript is the results of their own effort and ability. They have indicated all quotes, citations and references. Furthermore, the authors have not submitted any essay, paper or thesis with similar content elsewhere. No conflict of interest exits in the submission of this manuscript.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 February 2024

Jie Wan, Biao Chen, Jianghua Shen, Katsuyoshi Kondoh, Shuiqing Liu and Jinshan Li

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during…

Abstract

Purpose

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during fabrication, which are impossible to be removed by heat treatment. This paper aims to remove those microvoids in as-built AlSi10Mg alloys by hot forging and enhance their mechanical properties.

Design/methodology/approach

AlSi10Mg samples were built using prealloyed powder with a set of optimized LPBF parameters, viz. 350 W of laser power, 1,170 mm/s of scan speed, 50 µm of layer thickness and 0.24 mm of hatch spacing. As-built samples were preheated to 430°C followed by immediate pressing with two different thickness reductions of 10% and 35%. The effect of hot forging on the microstructure was analyzed by means of X-ray diffraction, scanning electron microscopy, electron backscattered diffraction and transmission electron microscopy. Tensile tests were performed to reveal the effect of hot forging on the mechanical properties.

Findings

By using hot forging, the large number of microvoids in both as-built and post heat-treated samples were mostly healed. Moreover, the Si particles were finer in forged condition (∼150 nm) compared with those in heat-treated condition (∼300 nm). Tensile tests showed that compared with heat treatment, the hot forging process could noticeably increase tensile strength at no expense of ductility. Consequently, the toughness (integration of tensile stress and strain) of forged alloy increased by ∼86% and ∼24% compared with as-built and heat-treated alloys, respectively.

Originality/value

Hot forging can effectively remove the inevitable microvoids in metals fabricated via LPBF, which is beneficial to the mechanical properties. These findings are inspiring for the evolution of the LPBF technique to eliminate the microvoids and boost the mechanical properties of metals fabricated via LPBF.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 September 2024

Yiting Kang, Biao Xue, Jianshu Wei, Riya Zeng, Mengbo Yan and Fei Li

The accurate prediction of driving torque demand is essential for the development of motion controllers for mobile robots on complex terrains. This paper aims to propose a hybrid…

12

Abstract

Purpose

The accurate prediction of driving torque demand is essential for the development of motion controllers for mobile robots on complex terrains. This paper aims to propose a hybrid model of torque prediction, adaptive EC-GPR, for mobile robots to address the problem of estimating the required driving torque with unknown terrain disturbances.

Design/methodology/approach

An error compensation (EC) framework is used, and the preliminary prediction driving torque value is achieved using Gaussian process regression (GPR). The error is predicted using a continuous hidden Markov model to generate compensation for the prediction residual caused by terrain disturbances and uncertainties. As the final step, a gain coefficient is used to adaptively tune the significance of the compensation term through parameter resetting. The proposed model is verified on a sample set, including the driving torque of a mobile robot on three different sandy terrains with two driving modes.

Findings

The results show that the adaptive EC-GPR yields the highest prediction accuracy when compared with existing methods.

Originality/value

It is demonstrated that the proposed model can predict the driving torque accurately for mobile robots in an unconstructed environment without terrain identification.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 November 2023

Yang Li and Tianxiang Lan

This paper aims to employ a multivariate nonlinear regression analysis to establish a predictive model for the final fracture area, while accounting for the impact of individual…

Abstract

Purpose

This paper aims to employ a multivariate nonlinear regression analysis to establish a predictive model for the final fracture area, while accounting for the impact of individual parameters.

Design/methodology/approach

This analysis is based on the numerical simulation data obtained, using the hybrid finite element–discrete element (FE–DE) method. The forecasting model was compared with the numerical results and the accuracy of the model was evaluated by the root mean square (RMS) and the RMS error, the mean absolute error and the mean absolute percentage error.

Findings

The multivariate nonlinear regression model can accurately predict the nonlinear relationships between injection rate, leakoff coefficient, elastic modulus, permeability, Poisson’s ratio, pore pressure and final fracture area. The regression equations obtained from the Newton iteration of the least squares method are strong in terms of the fit to the six sensitive parameters, and the model follow essentially the same trend with the numerical simulation data, with no systematic divergence detected. Least absolutely deviation has a significantly weaker performance than the least squares method. The percentage contribution of sensitive parameters to the final fracture area is available from the simulation results and forecast model. Injection rate, leakoff coefficient, permeability, elastic modulus, pore pressure and Poisson’s ratio contribute 43.4%, −19.4%, 24.8%, −19.2%, −21.3% and 10.1% to the final fracture area, respectively, as they increased gradually. In summary, (1) the fluid injection rate has the greatest influence on the final fracture area. (2)The multivariate nonlinear regression equation was optimally obtained after 59 iterations of the least squares-based Newton method and 27 derivative evaluations, with a decidability coefficient R2 = 0.711 representing the model reliability and the regression equations fit the four parameters of leakoff coefficient, permeability, elastic modulus and pore pressure very satisfactorily. The models follow essentially the identical trend with the numerical simulation data and there is no systematic divergence. The least absolute deviation has a significantly weaker fit than the least squares method. (3)The nonlinear forecasting model of physical parameters of hydraulic fracturing established in this paper can be applied as a standard for optimizing the fracturing strategy and predicting the fracturing efficiency in situ field and numerical simulation. Its effectiveness can be trained and optimized by experimental and simulation data, and taking into account more basic data and establishing regression equations, containing more fracturing parameters will be the further research interests.

Originality/value

The nonlinear forecasting model of physical parameters of hydraulic fracturing established in this paper can be applied as a standard for optimizing the fracturing strategy and predicting the fracturing efficiency in situ field and numerical simulation. Its effectiveness can be trained and optimized by experimental and simulation data, and taking into account more basic data and establishing regression equations, containing more fracturing parameters will be the further research interests.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 August 2023

Biao Liu, Qiao Wang, Y.T. Feng, Zongliang Zhang, Quanshui Huang, Wenxiang Tian and Wei Zhou

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method…

Abstract

Purpose

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method (LIBEM).

Design/methodology/approach

Due to considering the heat source, domain integral is generated in the traditional heat conduction boundary integral equation (BIE), which will counteract the well-known merit of the BEM, namely, boundary-only discretization. To avoid volume discretization, the enhanced BEM, the LIBEM with dimension reduction property is introduced to transfer the domain integral into line integrals. Besides, owing to the unsatisfactory performance of the LIBEM when it comes to large-scale structures requiring massive computation, the FMM-accelerated LIBEM (FM-LIBEM) is proposed to improve the computation efficiency further.

Findings

Assuming N and M are the numbers of nodes and integral lines, respectively, the FM-LIBEM can reduce the time complexity from O(NM) to about O(N+ M), and a full discussion and verification of the advantage are done based on numerical examples under heat conduction.

Originality/value

(1) The LIBEM is applied to 3D heat conduction analysis with heat source. (2) The domain integrals can be transformed into boundary integrals with straight line integrals by the LIM. (3) A FM-LIBEM is proposed and can reduce the time complexity from O(NM) to O(N+ M). (4) The FM-LIBEM with high computational efficiency is exerted to solve 3D heat conduction analysis with heat source in massive computation successfully.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 September 2024

Gang Li, Shuainan Song, Qun Cai, Biao Wu and Zhichao Wen

For the purpose of saving nickel, this study aims to develop new duplex stainless steel cored wires suitable for wire arc additive manufacturing (WAAM) with the addition of…

Abstract

Purpose

For the purpose of saving nickel, this study aims to develop new duplex stainless steel cored wires suitable for wire arc additive manufacturing (WAAM) with the addition of nitrogen.

Design/methodology/approach

The effect of nitrogen content on the microstructure and mechanical properties of the thin-walled deposits is investigated in detail.

Findings

The microstructure of thin-walled deposits mainly consists of austenite, ferrite and secondary austenite. With increasing nitrogen content, the austenite in the deposited metals increases. The austenite proportion in the bottom region is more than that in the top region of the deposited metals. The χ phase is randomly distributed at the grain boundaries and within ferrite. The σ phase is mainly precipitated at ferrite and austenite grain boundaries. With increasing nitrogen content, the tensile strength of the deposited metals increases, but the impact toughness of the deposited metals deteriorates.

Originality/value

This study proposes new duplex stainless steel cored wires for WAAM, which realizes the objective of saving nickel.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 August 2024

Qiqi Zhang, Weijun Zhen, Quansheng Ou, Yusufu Abulajiang and Gangshan Ma

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization…

Abstract

Purpose

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization of CSO, trimethylolpropane, phthalic anhydride (PA) and trimellitic anhydride (TMA). The prepared resin coating material was subsequently applied to the surface of steel structure material.

Design/methodology/approach

This study aimed to synthesize water-based alkyd resins using CSO. Therefore, the alkyd resin was introduced with TMA containing carboxyl groups and neutralized with triethylamine (TEA) to form a water-soluble salt. Then, the esterification kinetics of CSO water-based alkyd resin were investigated, and finally, the basic properties of CSO water-based alkyd resin coating were evaluated.

Findings

It was demonstrated that CSO water-based alkyd resin exhibited excellent water solubility and that the esterification kinetic of the synthesis reaction could be described by a second-order reaction. The coating properties of the material were investigated and found to have good basic properties, with 40% resin addition having the best corrosion resistance. Consequently, it could be effectively applied to the surface of steel structural materials.

Originality/value

This study not only met the requirement of environmentally friendly development but also expanded the application of CSO through the synthesis of CSO water-based alkyd resin via alcoholysis. Compared to fatty acid process, the alcoholysis reduced the need for fatty acid pre-extraction, simplifying the alkyd resin synthesis process. Thus, economic costs are effectively reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 June 2024

Adjoa Candide Douce Djossouvi, Biao Luo, Muhideen Sayibu, Devincy Yanne Sylvaire Debongo and Aisha Rauf

This study investigates and explores sustainable fashion based on social attitudes toward culture and sustainable fashion effects in sub-Saharan Africa (SSA), based on…

Abstract

Purpose

This study investigates and explores sustainable fashion based on social attitudes toward culture and sustainable fashion effects in sub-Saharan Africa (SSA), based on environmental knowledge and consumer satisfaction initiatives. It explicates sustainable fashion on the sustainable development agenda in addressing the gap of cultural value, environmental knowledge and sustainable fashion in SSA.

Design/methodology/approach

Using a quantitative approach, the study employed a web-based online cross-sectional survey to extract tangible information from 620 participants from SSA. The study integrated theory of planned behaviors (TPB) model and hypotheses. A structural equation model (SEM) was used to test all proposed hypotheses.

Findings

The results show that low environmental knowledge, influenced by geographical and cultural differences, affected fashion value, as which is predictively significant for sustainable fashion. However, attitude and cultural value results found statistical significance for consumer satisfaction in sustainable fashion. Furthermore, mediation was attained between consumer behavioral and environmental knowledge of sustainable fashion. The study recommends government policies on educational awareness and textile regulations for environmental garbage disposal possible harmful effects of climate change and finally, designing innovative initiatives for environmentally friendly fashion.

Originality/value

This study examines the environmental and social attitudes as well as behavioral effects, of an ecosystem that would most likely have a short life period, eliminate disposal dumps and foster an environmental control policy. Consequently, the study’s conceptual model and extended TPB contribute to how sustainable fashion supports environmental knowledge, consumer attitudes and cultural behaviors in fashion among Sub-Saharan Africans.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

113

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 May 2023

Yuheng Wang and Junyuan Chen

This study seeks to understand how accountant stereotypes have been constructed and reconstructed at the macro-national and the structural level in Chinese society.

1608

Abstract

Purpose

This study seeks to understand how accountant stereotypes have been constructed and reconstructed at the macro-national and the structural level in Chinese society.

Design/methodology/approach

This qualitative investigation into China's social construction of accountant stereotypes employs Becker's (1963) labelling theory. Viewing stereotyping as a socially constructed practice, this study draws on a post-positivistic, reflexive epistemology in conducting 28 semi-structured interviews with accountants and related actors.

Findings

Chinese accountant stereotypes are constructed and reconstructed according to the rules created and enforced in different cultural-political periods. The accountant stereotypes constructed during the ancient Confucian period (500 BC – 1948) were replaced during 1949 and 2012 when the political focus shifted towards propagating socialism and later promoting economic growth. They also show how Confucian stereotypes of accountants resurfaced in 2013 but were reconstructed by the central government's cultural confidence policy of propagating Confucianism.

Originality/value

Empirically, prior literature has focused on what the accountant stereotype is and how accountants respond to such stereotypes, but it has neglected the ways in which these accountant stereotypes are politically and culturally constructed, diffused and legitimated. This paper fills in the gap by understanding the social practice of accountant stereotyping in a previously unexplored political-cultural context, namely Chinese society. In theoretical terms, by offering the first use of Becker's (1963) labelling theory in the accounting literature, it furthermore enhances our understanding of how accountants' identities and social standing are shaped by social rules.

Details

Accounting, Auditing & Accountability Journal, vol. 37 no. 1
Type: Research Article
ISSN: 0951-3574

Keywords

1 – 10 of 15