Search results

1 – 10 of 12
Article
Publication date: 9 January 2023

Leilei Shi, Xinshuai Guo, Andrea Fenu and Bing-Hong Wang

This paper applies a volume-price probability wave differential equation to propose a conceptual theory and has innovative behavioral interpretations of intraday dynamic market…

596

Abstract

Purpose

This paper applies a volume-price probability wave differential equation to propose a conceptual theory and has innovative behavioral interpretations of intraday dynamic market equilibrium price, in which traders' momentum, reversal and interactive behaviors play roles.

Design/methodology/approach

The authors select intraday cumulative trading volume distribution over price as revealed preferences. An equilibrium price is a price at which the corresponding cumulative trading volume achieves the maximum value. Based on the existence of the equilibrium in social finance, the authors propose a testable interacting traders' preference hypothesis without imposing the invariance criterion of rational choices. Interactively coherent preferences signify the choices subject to interactive invariance over price.

Findings

The authors find that interactive trading choices generate a constant frequency over price and intraday dynamic market equilibrium in a tug-of-war between momentum and reversal traders. The authors explain the market equilibrium through interactive, momentum and reversal traders. The intelligent interactive trading preferences are coherent and account for local dynamic market equilibrium, holistic dynamic market disequilibrium and the nonlinear and non-monotone V-shaped probability of selling over profit (BH curves).

Research limitations/implications

The authors will understand investors' behaviors and dynamic markets through more empirical execution in the future, suggesting a unified theory available in social finance.

Practical implications

The authors can apply the subjects' intelligent behaviors to artificial intelligence (AI), deep learning and financial technology.

Social implications

Understanding the behavior of interacting individuals or units will help social risk management beyond the frontiers of the financial market, such as governance in an organization, social violence in a country and COVID-19 pandemics worldwide.

Originality/value

It uncovers subjects' intelligent interactively trading behaviors.

Details

China Finance Review International, vol. 13 no. 4
Type: Research Article
ISSN: 2044-1398

Keywords

Article
Publication date: 8 November 2023

Yang Zhou, Zhong Li, Yuhe Huang, Xiaohan Chen, Xinggang Li, Xiaogang Hu and Qiang Zhu

Laser powder bed fusion (LPBF) in-situ alloying is a recently developed technology that provides a facile approach to optimizing the microstructural and compositional…

Abstract

Purpose

Laser powder bed fusion (LPBF) in-situ alloying is a recently developed technology that provides a facile approach to optimizing the microstructural and compositional characteristics of the components for high performance goals. However, the complex mass and heat transfer behavior of the molten pool results in an inhomogeneous composition distribution within the samples fabricated by LPBF in-situ alloying. The study aims to investigate the heat and mass transfer behavior of an in-situ alloyed molten pool by developing a three-dimensional transient thermal-flow model that couples the metallurgical behavior of the alloy, thereby revealing the formation mechanism of composition inhomogeneity.

Design/methodology/approach

A multispecies multiphase computational fluid dynamic model was developed with thermodynamic factors derived from the phase diagram of the selected alloy system. The characteristics of the Al/Cu powder bed in-situ alloying process were investigated as a benchmark. The metallurgical behaviors including powder melting, thermal-flow, element transfer and solidification were investigated.

Findings

The Peclet number indicates that the mass transfer in the molten pool is dominated by convection. The large variation in material properties and temperature results in the presence of partially melted Cu-powder and pre-solidified particles in the molten pool, which further hinder the convection mixing. The study of simulation and experiment indicates that optimizing the laser energy input is beneficial for element homogenization. The effective time and driving force of the convection stirring can be improved by increasing the volume energy density.

Originality/value

This study provides an in-depth understanding of the formation mechanism of composition inhomogeneity in alloy fabricated by LPBF in-situ alloying.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 16 May 2024

Cyntia Vilasboas Calixto Casnici, Germano Glufke Reis, David Schulzmann, Marina Papanastassiou and Jeremy Clegg

Multinational enterprises (MNEs) in the agri-food sector are continuously transforming their global value chains (GVCs) to address sustainable development challenges of food…

Abstract

Multinational enterprises (MNEs) in the agri-food sector are continuously transforming their global value chains (GVCs) to address sustainable development challenges of food security (SDG2) and climate change (SDG13). However, the central role of non-governmental organisations (NGOs) in (re)creating GVCs across multilevel stakeholders through innovative approaches to solve sustainability challenges remains under investigated. This explorative study investigates how international NGOs influence the transformation of large-scale industrial animal agriculture to a more sustainable (cell-based) agri-food GVC. The authors conducted a case study on the Good Food Institute (GFI), an international NGO, that has been an active player in the transition to alternative sources of protein to solve animal-based agriculture sustainability issues. The results show that an international NGO can contribute to the transition to a more sustainable GVC and can enhance the GVC’s innovation capabilities.

Details

Walking the Talk? MNEs Transitioning Towards a Sustainable World
Type: Book
ISBN: 978-1-83549-117-1

Keywords

Book part
Publication date: 14 December 2023

Katie Wright, Malin Arvidsson, Johanna Sköld, Shurlee Swain and Sari Braithwaite

This chapter explores what it means for adults to claim child rights. Focussing on activism against institutional child abuse, it considers the question of what happens to the…

Abstract

This chapter explores what it means for adults to claim child rights. Focussing on activism against institutional child abuse, it considers the question of what happens to the mobilisation of child rights discourse when the person claiming those rights is no longer a child. In other words, how is the concept of child rights used retrospectively and what does this reveal, both about childhood and about child rights? The chapter begins with the contention that childhood needs to be understood as not only a concept that speaks to the lives of children, their experiences, and their place within the social structure. Rather, we suggest that a more expansive view enables recognition of the enduring significance of childhood in adults’ lives. We illustrate this argument with examples of the formation of collective identities based on childhood experiences, before turning to the ways that child rights are marshalled by adults in activism, in commissions of inquiry, and in the legal sphere. Throughout the chapter, we consider issues of temporality. We explore the ways in which adult survivors of childhood abuse retrospectively claim rights denied to them in the past and we examine how activism, official inquiries, and legal mechanisms position adults in relation to their childhood selves. We then consider some of the dilemmas that arise with retrospective rights claims; particularly questions of retroactivity in relation to responsibility and redress for past abuse. Finally, we explore the temporal repositioning of childhood and how past and present is bridged. This occurs through survivor activism and, in more formal mechanisms such as inquiries, by focussing on how people are represented as child victims in the past and survivors in the present.

Details

Childhood, Youth and Activism: Demands for Rights and Justice from Young People and their Advocates
Type: Book
ISBN: 978-1-80117-469-5

Keywords

Article
Publication date: 15 July 2022

Upendra Bajpai, Palash Soni, Vivek Kumar Gaba and Shubhankar Bhowmick

When the temperature of an air conditioning unit’s fin surface goes below its dew point temperature, condensation forms on the unit’s surface. As a result, the cooling coil’s…

Abstract

Purpose

When the temperature of an air conditioning unit’s fin surface goes below its dew point temperature, condensation forms on the unit’s surface. As a result, the cooling coil’s performance is compromised. By altering the cross-section and heat conductivity of the fins, the performance of such systems can be improved. This study aims to analyze the thermal performance of longitudinal fins made up of a variable thickness (assuming constant weight) and functionally graded material.

Design/methodology/approach

Different grading parameters are considered for an exponential variation of thermal conductivity. The humidity ratio and the corresponding fin temperatures are assumed to follow a cubic relationship. The Bvp4c solver in MATLAB® is used to solve the differential heat transfer equation resulting from balancing heat transfer in a small segment.

Findings

Validation of the methodology is provided by previous research presented in this area. For different combinations of grading parameters, geometry parameters and relative humidity, the normalized temperature distribution along the fin length and fin efficiency contours are plotted, and the results are very promising.

Originality/value

When compared to the efficiency of an isotropic homogenous rectangular longitudinal fin with optimal geometry and grading parameters, a 17% increase in efficiency under fully wet conditions is measured. When it comes to fin design, these efficiency contour plots are extremely useful.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 October 2023

Zhanshe Guo, Xiangdang Liang and Sen Wang

This measuring system is designed to effectively simulate the mechanical reliability of the operated bone fixators. It can be used to pre-evaluate the mechanical performance of…

Abstract

Purpose

This measuring system is designed to effectively simulate the mechanical reliability of the operated bone fixators. It can be used to pre-evaluate the mechanical performance of the operated fixator on the patients, including the static mechanical properties and fatigue properties when the patient walks after the operation.

Design/methodology/approach

It is mainly composed of a one-dimensional platform, a force sensor, a high measuring precision displacement sensor and a servo motor. Loading (which is used to simulate the loading status of the fixators after the operation) of the system is realized by the rotation of the servo motor. It can be read by a high precision force sensor. The relative displacement of the broken bone is obtained by a high precision laser displacement sensor. Corresponding theoretical analysis is also carried out.

Findings

Calibrated results of the system indicate that the output voltage and the measured force of the force sensors possess an excellent linear relationship, and the calculated nonlinear error is just 0.0002%. The maximum relative displacement between the operated broken bone under 700 N axial force is about 1 mm. Fatigue test under 550 N loading for 85,000 cycles also indicates the feasibility of the design.

Originality/value

This device is successfully designed and fabricated to pre-evaluate the mechanical performance of the bone fixators. High precision force sensor and displacement sensor are used to successfully increase the measuring ability of the system. This will offer some help to pertinent researchers.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 May 2024

Yong Fu, Kun Chen, Li He and Hui Tan Wang

The purpose of this paper is to address two major challenges faced by robotic fish when operating in underwater environments: insufficient path planning capabilities and…

Abstract

Purpose

The purpose of this paper is to address two major challenges faced by robotic fish when operating in underwater environments: insufficient path planning capabilities and difficulties in avoiding dynamic obstacles. To achieve this, a method is proposed that combines the Improved Rapid Randomized Tree Star (IRRT*) with the dynamic window approach (DWA).

Design/methodology/approach

The RRT-connect algorithm is used to determine an initial feasible path quickly. The quality of sampling points is then improved by dividing the regions and selecting each region’s probability based on its fitness value. The fitness function and roulette wheel method are introduced for region selection. Subtarget points of the DWA algorithm are extracted from the IRRT* algorithm to achieve real-time dynamic path planning.

Findings

In various maps, the iteration count for the IRRT* algorithm decreased by 61%, 35% and 51% respectively, compared to the RRT* algorithm, whereas the iteration time was reduced by 75%, 34% and 57%, respectively. In addition, the IRRT*-DWA algorithm can successfully navigate through multiple dynamic obstacles, and the average time, path length, etc. do not change much when parameters change, and the stability is high.

Originality/value

A novel IRRT*-DWA algorithm is proposed, which, by refining the sampling strategy and updating sub-target points in real time, not only addresses the limitations of existing algorithms in terms of path planning efficiency in complex environments but also enhances their capability to avoid dynamic obstacles. Ultimately, experimental results indicate a high level of similarity between the actual and ideal paths.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 22 May 2024

Chris O'Donnell and Anthony Cusack

Housing is a fundamental need for all humans. A roof over our heads can provide safety, warmth and stability. Once we have this stability, our physical and mental health is more…

Abstract

Housing is a fundamental need for all humans. A roof over our heads can provide safety, warmth and stability. Once we have this stability, our physical and mental health is more likely to be managed effectively. However, housing, or indeed a roof, is not something everyone has the privilege of experiencing. Housing policy across the globe is dominated by capitalistic thinking: the profit becomes the priority. Those marginalised, traumatised and stigmatised suffer the most, many having to access inadequate homeless shelters, still more sleeping on our cold streets. Current service provision favours the middle class. In these circumstances ill-health manifests, responses are often inadequate, yet some innovations develop. Housing First seeks to reach into the homeless population and provide housing to those most entrenched, while Safetynet seeks to provide health-related services to those homeless and experiencing other related problems. Both interventions understand the role peers can play in providing these services.

Article
Publication date: 12 February 2024

Siquan Zhang

In eddy current nondestructive testing, ferrite-cored probes are usually used to detect and locate defects such as cracks and corrosion in conductive materials. However, the…

Abstract

Purpose

In eddy current nondestructive testing, ferrite-cored probes are usually used to detect and locate defects such as cracks and corrosion in conductive materials. However, the generic analytical model for evaluating corrosion in layered conductor using ferrite-cored probe has not yet been developed. The purpose of this paper is to propose and verify the analytical model of an E-cored probe for evaluating corrosion in layered conductive materials.

Design/methodology/approach

A cylindrical coordinate system is adopted and the solution domain is truncated in the radial direction. The magnetic vector potential of each region excited by a filamentary coil is derived first, and then the expansion coefficients of the solution are obtained by matching the boundary and interface conditions between the regions and the subregions. Finally the closed-form expression of the impedance of the multi-turn coil is derived by using the truncated region eigenfunction expansion (TREE) method, and the impedance calculation is carried out in Mathematica. In the frequency range of 100 Hz to 10 kHz, the impedance changes of the E-cored coil and air-cored coil due to the layered conductor containing corrosion are calculated, respectively, and the influences of corrosion on the coil impedance change are investigated.

Findings

An analytical model for the detection and evaluating of corrosion in layered conductive materials using E-cored probe is proposed. The model can quickly and accurately calculate the impedance change of E-cored coil due to corrosion in layered conductor. The correctness of the analytical model is verified by finite element method and experiments.

Originality/value

An accurate theoretical model of E-cored probe for evaluating corrosion of multilayer conductor is presented. The analytical model can be used to detect the inhomogeneity of layered conductor, design ferrite-cored probe or directly evaluate the corrosion defects of layered conductors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 March 2024

Salma Benharref, Vincent Lanfranchi, Daniel Depernet, Tahar Hamiti and Sara Bazhar

The purpose of this paper is to propose a new method that allows to compare the magnetic pressures of different pulse width modulation (PWM) strategies in a fast and efficient way.

Abstract

Purpose

The purpose of this paper is to propose a new method that allows to compare the magnetic pressures of different pulse width modulation (PWM) strategies in a fast and efficient way.

Design/methodology/approach

The voltage harmonics are determined using the double Fourier integral. As for current harmonics and waveforms, a new generic model based on the Park transformation and a dq model of the machine was established taking saturation into consideration. The obtained analytical waveforms are then injected into a finite element software to compute magnetic pressures using nodal forces.

Findings

The overall proposed method allows to accelerate the calculations and the comparison of different PWM strategies and operating points as an analytical model is used to generate current waveforms.

Originality/value

While the analytical expressions of voltage harmonics are already provided in the literature for the space vector pulse width modulation, they had to be calculated for the discontinuous pulse width modulation. In this paper, the obtained expressions are provided. For current harmonics, different models based on a linear and a nonlinear model of the machine are presented in the referenced papers; however, these models are not generic and are limited to the second range of harmonics (two times the switching frequency). A new generic model is then established and used in this paper after being validated experimentally. And finally, the direct injection of analytical current waveforms in a finite element software to perform any magnetic computation is very efficient.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 12