Search results

1 – 10 of 10
Article
Publication date: 4 July 2023

Jianhang Xu, Peng Li and Yiren Yang

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the…

Abstract

Purpose

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the structural displacement-dependent unsteady fluid force, the steady one related to structural initial configuration and the variable structural parameters (i.e. the variable support stiffness) are considered in the modeling.

Design/methodology/approach

The steady fluid force is treated as a pipe preload, and the elastically supported pipe-fluid model is dealt with as a prestressed hydroelastic system with variable parameters. To avoid repeated numerical simulations caused by parameter variation, structural and hydrodynamic reduced-order models (ROMs) instead of conventional computational structural dynamics (CSD) and computational fluid dynamics (CFD) solvers are utilized to produce data for the update of the structural, hydrodynamic and hydroelastic state-space equations. Radial basis function neural network (RBFNN), autoregressive with exogenous input (ARX) model as well as proper orthogonal decomposition (POD) algorithm are applied to modeling these two ROMs, and a hybrid framework is proposed to incorporate them.

Findings

The proposed approach is validated by comparing its predictions with theoretical solutions. When the steady fluid force is absent, the predictions agree well with the “inextensible theory”. The pipe always loses its stability via out-of-plane divergence first, regardless of the support stiffness. However, when steady fluid force is considered, the pipe remains stable throughout as flow speed increases, consistent with the “extensible theory”. These results not only verify the accuracy of the present modeling method but also indicate that the steady fluid force, rather than the extensibility of the pipe, is the leading factor for the differences between the in- and extensible theories.

Originality/value

The steady fluid force and the variable structural parameters are considered in the data-driven modeling of a hydroelastic system. Since there are no special restrictions on structural configuration, steady flow pattern and variable structural parameters, the proposed approach has strong portability and great potential application for other hydroelastic problems.

Abstract

Details

Organization and Governance Using Algorithms
Type: Book
ISBN: 978-1-83797-060-5

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Article
Publication date: 31 August 2023

Faisal Mehraj Wani, Jayaprakash Vemuri and Rajaram Chenna

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault…

Abstract

Purpose

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault Ground Motions (NFGMs), and thus forecasting the dynamic seismic response of structures, using conventional techniques, under such intense ground motions has remained a challenge.

Design/methodology/approach

The present study utilizes a 2D finite element model of an RC structure subjected to near-fault pulse-like ground motions with a focus on the storey drift ratio (SDR) as the key demand parameter. Five machine learning classifiers (MLCs), namely decision tree, k-nearest neighbor, random forest, support vector machine and Naïve Bayes classifier , were evaluated to classify the damage states of the RC structure.

Findings

The results such as confusion matrix, accuracy and mean square error indicate that the Naïve Bayes classifier model outperforms other MLCs with 80.0% accuracy. Furthermore, three MLC models with accuracy greater than 75% were trained using a voting classifier to enhance the performance score of the models. Finally, a sensitivity analysis was performed to evaluate the model's resilience and dependability.

Originality/value

The objective of the current study is to predict the nonlinear storey drift demand for low-rise RC structures using machine learning techniques, instead of labor-intensive nonlinear dynamic analysis.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Book part
Publication date: 5 April 2024

Feng Yao, Qinling Lu, Yiguo Sun and Junsen Zhang

The authors propose to estimate a varying coefficient panel data model with different smoothing variables and fixed effects using a two-step approach. The pilot step estimates the…

Abstract

The authors propose to estimate a varying coefficient panel data model with different smoothing variables and fixed effects using a two-step approach. The pilot step estimates the varying coefficients by a series method. We then use the pilot estimates to perform a one-step backfitting through local linear kernel smoothing, which is shown to be oracle efficient in the sense of being asymptotically equivalent to the estimate knowing the other components of the varying coefficients. In both steps, the authors remove the fixed effects through properly constructed weights. The authors obtain the asymptotic properties of both the pilot and efficient estimators. The Monte Carlo simulations show that the proposed estimator performs well. The authors illustrate their applicability by estimating a varying coefficient production frontier using a panel data, without assuming distributions of the efficiency and error terms.

Details

Essays in Honor of Subal Kumbhakar
Type: Book
ISBN: 978-1-83797-874-8

Keywords

Article
Publication date: 7 September 2023

Dileep Bonthu, Bharath H.S., Siddappa I. Bekinal, P. Jeyaraj and Mrityunjay Doddamani

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical…

Abstract

Purpose

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical buckling and free vibration behavior of 3DP FGSFs using experimental and numerical analyses.

Design/methodology/approach

Initially, hollow glass microballoon-reinforced high-density polyethylene-based polymer composite foams were developed, and these materials were extruded into their respective filaments. These filaments are used as feedstock materials in fused filament fabrication based 3DP for the development of FGSFs. Scanning electron microscopy analysis was performed on the freeze-dried samples to observe filler sustainability. Furthermore, the density, critical buckling load (Pcr), natural frequency (fn) and damping factor of FGSFs were evaluated. The critical buckling load (Pcr) of the FGSFs was estimated using the double-tangent method and modified Budiansky criteria.

Findings

The density of FGSFs decreased with increasing filler percentage. The mechanical buckling load increased with the filler percentage. The natural frequency corresponding to the first mode of the FGSFs exhibited a decreasing trend with an increasing load in the pre-buckling regime and an increase in post-buckled zone, whereas the damping factor exhibited the opposite trend.

Originality/value

The current research work is valuable for the area of 3D printing by developing the functionally graded foam based sandwich beams. Furthermore, it intended to present the buckling behavior of 3D printed FGSFs, variation of frequency and damping factor corresponding to first three modes with increase in load.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 January 2024

Chuanmin Mi, Xiaoyi Gou, Yating Ren, Bo Zeng, Jamshed Khalid and Yuhuan Ma

Accurate prediction of seasonal power consumption trends with impact disturbances provides a scientific basis for the flexible balance of the long timescale power system…

Abstract

Purpose

Accurate prediction of seasonal power consumption trends with impact disturbances provides a scientific basis for the flexible balance of the long timescale power system. Consequently, it fosters reasonable scheduling plans, ensuring the safety of the system and improving the economic dispatching efficiency of the power system.

Design/methodology/approach

First, a new seasonal grey buffer operator in the longitudinal and transverse dimensional perspectives is designed. Then, a new seasonal grey modeling approach that integrates the new operator, full real domain fractional order accumulation generation technique, grey prediction modeling tool and fruit fly optimization algorithm is proposed. Moreover, the rationality, scientificity and superiority of the new approach are verified by designing 24 seasonal electricity consumption forecasting approaches, incorporating case study and amalgamating qualitative and quantitative research.

Findings

Compared with other comparative models, the new approach has superior mean absolute percentage error and mean absolute error. Furthermore, the research results show that the new method provides a scientific and effective mathematical method for solving the seasonal trend power consumption forecasting modeling with impact disturbance.

Originality/value

Considering the development trend of longitudinal and transverse dimensions of seasonal data with impact disturbance and the differences in each stage, a new grey buffer operator is constructed, and a new seasonal grey modeling approach with multi-method fusion is proposed to solve the seasonal power consumption forecasting problem.

Highlights

The highlights of the paper are as follows:

  1. A new seasonal grey buffer operator is constructed.

  2. The impact of shock perturbations on seasonal data trends is effectively mitigated.

  3. A novel seasonal grey forecasting approach with multi-method fusion is proposed.

  4. Seasonal electricity consumption is successfully predicted by the novel approach.

  5. The way to adjust China's power system flexibility in the future is analyzed.

A new seasonal grey buffer operator is constructed.

The impact of shock perturbations on seasonal data trends is effectively mitigated.

A novel seasonal grey forecasting approach with multi-method fusion is proposed.

Seasonal electricity consumption is successfully predicted by the novel approach.

The way to adjust China's power system flexibility in the future is analyzed.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 5 April 2024

Felipe Sales Nogueira, João Luiz Junho Pereira and Sebastião Simões Cunha Jr

This study aims to apply for the first time in literature a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg…

20

Abstract

Purpose

This study aims to apply for the first time in literature a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg algorithm and test the sensors' configuration found in a delamination identification case study.

Design/methodology/approach

This work aims to study the damage identification in an aircraft wing using the Lichtenberg and multi-objective Lichtenberg algorithms. The former is used to identify damages, while the last is associated with feature selection techniques to perform the first sensor placement optimization (SPO) methodology with variable sensor number. It is applied aiming for the largest amount of information about using the most used modal metrics in the literature and the smallest sensor number at the same time.

Findings

The proposed method was not only able to find a sensor configuration for each sensor number and modal metric but also found one that had full accuracy in identifying delamination location and severity considering triaxial modal displacements and minimal sensor number for all wing sections.

Originality/value

This study demonstrates for the first time in the literature how the most used modal metrics vary with the sensor number for an aircraft wing using a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg algorithm.

Article
Publication date: 17 March 2023

Stewart Jones

This study updates the literature review of Jones (1987) published in this journal. The study pays particular attention to two important themes that have shaped the field over the…

Abstract

Purpose

This study updates the literature review of Jones (1987) published in this journal. The study pays particular attention to two important themes that have shaped the field over the past 35 years: (1) the development of a range of innovative new statistical learning methods, particularly advanced machine learning methods such as stochastic gradient boosting, adaptive boosting, random forests and deep learning, and (2) the emergence of a wide variety of bankruptcy predictor variables extending beyond traditional financial ratios, including market-based variables, earnings management proxies, auditor going concern opinions (GCOs) and corporate governance attributes. Several directions for future research are discussed.

Design/methodology/approach

This study provides a systematic review of the corporate failure literature over the past 35 years with a particular focus on the emergence of new statistical learning methodologies and predictor variables. This synthesis of the literature evaluates the strength and limitations of different modelling approaches under different circumstances and provides an overall evaluation the relative contribution of alternative predictor variables. The study aims to provide a transparent, reproducible and interpretable review of the literature. The literature review also takes a theme-centric rather than author-centric approach and focuses on structured themes that have dominated the literature since 1987.

Findings

There are several major findings of this study. First, advanced machine learning methods appear to have the most promise for future firm failure research. Not only do these methods predict significantly better than conventional models, but they also possess many appealing statistical properties. Second, there are now a much wider range of variables being used to model and predict firm failure. However, the literature needs to be interpreted with some caution given the many mixed findings. Finally, there are still a number of unresolved methodological issues arising from the Jones (1987) study that still requiring research attention.

Originality/value

The study explains the connections and derivations between a wide range of firm failure models, from simpler linear models to advanced machine learning methods such as gradient boosting, random forests, adaptive boosting and deep learning. The paper highlights the most promising models for future research, particularly in terms of their predictive power, underlying statistical properties and issues of practical implementation. The study also draws together an extensive literature on alternative predictor variables and provides insights into the role and behaviour of alternative predictor variables in firm failure research.

Details

Journal of Accounting Literature, vol. 45 no. 2
Type: Research Article
ISSN: 0737-4607

Keywords

Article
Publication date: 20 March 2024

Nisha, Neha Puri, Namita Rajput and Harjit Singh

The purpose of this study is to analyse and compile the literature on various option pricing models (OPM) or methodologies. The report highlights the gaps in the existing…

16

Abstract

Purpose

The purpose of this study is to analyse and compile the literature on various option pricing models (OPM) or methodologies. The report highlights the gaps in the existing literature review and builds recommendations for potential scholars interested in the subject area.

Design/methodology/approach

In this study, the researchers used a systematic literature review procedure to collect data from Scopus. Bibliometric and structured network analyses were used to examine the bibliometric properties of 864 research documents.

Findings

As per the findings of the study, publication in the field has been increasing at a rate of 6% on average. This study also includes a list of the most influential and productive researchers, frequently used keywords and primary publications in this subject area. In particular, Thematic map and Sankey’s diagram for conceptual structure and for intellectual structure co-citation analysis and bibliographic coupling were used.

Research limitations/implications

Based on the conclusion presented in this paper, there are several potential implications for research, practice and society.

Practical implications

This study provides useful insights for future research in the area of OPM in financial derivatives. Researchers can focus on impactful authors, significant work and productive countries and identify potential collaborators. The study also highlights the commonly used OPMs and emerging themes like machine learning and deep neural network models, which can inform practitioners about new developments in the field and guide the development of new models to address existing limitations.

Social implications

The accurate pricing of financial derivatives has significant implications for society, as it can impact the stability of financial markets and the wider economy. The findings of this study, which identify the most commonly used OPMs and emerging themes, can help improve the accuracy of pricing and risk management in the financial derivatives sector, which can ultimately benefit society as a whole.

Originality/value

It is possibly the initial effort to consolidate the literature on calibration on option price by evaluating and analysing alternative OPM applied by researchers to guide future research in the right direction.

Details

Qualitative Research in Financial Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-4179

Keywords

1 – 10 of 10