Search results

1 – 10 of over 9000
Article
Publication date: 1 March 1944

A.J. Schroeder

THERE are three principal points which are of special importance in the manufacture of any industrial article:

Abstract

THERE are three principal points which are of special importance in the manufacture of any industrial article:

Details

Aircraft Engineering and Aerospace Technology, vol. 16 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 17 June 2022

Wei Liu, Hongyan Zhu and Wangzhen Li

The dynamic characteristics prediction and frequency-modulation of pipeline was an important work for the design of aircraft hydraulic structure.

Abstract

Purpose

The dynamic characteristics prediction and frequency-modulation of pipeline was an important work for the design of aircraft hydraulic structure.

Design/methodology/approach

A complex pipeline was deemed as a combination of several segments of straight-pipe-element (SPE). The 3D vibration equations of each SPE were established in their local coordinate system based on Timoshenko-beam model and Euler-beam model, respectively. The dynamic-stiffness-matrixes were deduced from the dispersion relation of these equations. According to the complex pipeline layout in the global coordinate system, a multi dynamic stiffness matrixes assembling (MDSMA) algorithm was carried out to establish the characteristic equations of the whole complex pipeline. The MDSMA solutions were verified to be consistent with experimental results.

Findings

The MDSMA method based on Timoshenko-Beam model was more suitable for the short span aviation pipeline and the vibration at high frequency stage (>350 Hz). The layout affected the pipeline's in-plane stiffness and out-plane stiffness, for the Z-shaped pipe, each order natural mode took place on the ZP and NP alternately. Reasonable designs of bending position and bending radius were effective means for complex pipeline frequency-modulation.

Originality/value

A new dynamic modeling method of aircraft complex pipeline was proposed to obtain the influence of pipeline layout parameters on dynamic characteristics.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 March 2019

Muddasar Anwar, Toufik Al Khawli, Irfan Hussain, Dongming Gan and Federico Renda

This paper aims to present a soft closed-chain modular gripper for robotic pick-and-place applications. The proposed biomimetic gripper design is inspired by the Fin Ray effect…

Abstract

Purpose

This paper aims to present a soft closed-chain modular gripper for robotic pick-and-place applications. The proposed biomimetic gripper design is inspired by the Fin Ray effect, derived from fish fins physiology. It is composed of three axisymmetric fingers, actuated with a single actuator. Each finger has a modular under-actuated closed-chain structure. The finger structure is compliant in contact normal direction, with stiff crossbeams reorienting to help the finger structure conform around objects.

Design/methodology/approach

Starting with the design and development of the proposed gripper, a consequent mathematical representation consisting of closed-chain forward and inverse kinematics is detailed. The proposed mathematical framework is validated through the finite element modeling simulations. Additionally, a set of experiments was conducted to compare the simulated and prototype finger trajectories, as well as to assess qualitative grasping ability.

Findings

Key Findings are the presented mathematical model for closed-loop chain mechanisms, as well as design and optimization guidelines to develop controlled closed-chain grippers.

Research limitations/implications

The proposed methodology and mathematical model could be taken as a fundamental modular base block to explore similar distributed degrees of freedom (DOF) closed-chain manipulators and grippers. The enhanced kinematic model contributes to optimized dynamics and control of soft closed-chain grasping mechanisms.

Practical implications

The approach is aimed to improve the development of soft grippers that are required to grasp complex objects found in human–robot cooperation and collaborative robot (cobot) applications.

Originality/value

The proposed closed-chain mathematical framework is based on distributed DOFs instead of the conventional lumped joint approach. This is to better optimize and understand the kinematics of soft robotic mechanisms.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 December 2019

Ganesh Narayanan, Milan Joshi, Prasun Dutta and Kanak Kalita

Computational fluid dynamics (CFD) technique is the most commonly used numerical approach to simulate fluid flow behaviour. Owing to its computationally, cost-intensive nature CFD…

114

Abstract

Purpose

Computational fluid dynamics (CFD) technique is the most commonly used numerical approach to simulate fluid flow behaviour. Owing to its computationally, cost-intensive nature CFD models may not be easily and quickly deployable. In this regard, this study aims to present a support vector machine (SVM)-based metamodelling approach that can be easily trained and quickly deployed for carrying out large-scale studies.

Design/methodology/approach

Radial basis function and ε^*-insensitive loss function are used as kernel function and loss function, respectively. To prevent overfitting of the model, five-fold cross-validation root mean squared error is used while training the SVM metamodel. Rather than blindly using any SVM tuning parameters, a particle swarm optimisation (PSO) is used to fine-tune them. The developed SVM metamodel is tested using various error metrics on disjoint test data.

Findings

Using the SVM metamodel, a parametric study is conducted to understand the effect of various factors influencing the behaviour of the turbulent fluid flow in the pipe bend with CFD simulation data set. Based on the parametric study carried out, it is seen that the diametric position has the most effect on dimensionless axial velocity, whereas Reynolds number has the least effect.

Originality/value

This paper provides an effective PSO-tuned SVM metamodelling approach, which may be used as a significant cost-saving approach to quickly and accurately estimate fluid flow characteristics that, in general, require the use of expensive CFD models.

Article
Publication date: 4 July 2023

Kai Shi, Jun Li and Gang Bao

The structural adaptive ability of the soft robot is fully demonstrated in the grasping task of the soft hand. A soft hand can easily realize the envelope operation of the object…

Abstract

Purpose

The structural adaptive ability of the soft robot is fully demonstrated in the grasping task of the soft hand. A soft hand can easily realize the envelope operation of the object without planning. With the continuous development of robot applications, researchers are no longer satisfied with the ability of the soft hand to grasp. The purpose of this paper is to perceive the object’s shape while grasping to provide a decision-making basis for more intelligent robot applications.

Design/methodology/approach

This paper proposes a dual-signal comparison method to obtain the fingertip position. The dual signal includes the displacement calculated by the static model without considering the external load change and the displacement calculated by the bending sensor. The dual-signal comparison method can use the obvious change trend difference between the above two signals in the hover and contact states to identify the touch position. The authors make the soft hand scan around the object through touch operation to detect the object’s shape, and the tracks of every touch fingertip position can envelop the object’s shape.

Findings

The experimental results show that the dual-signal comparison method can accurately identify the contact moment of soft fingers. This detection method makes the soft hand develop the shape detection ability. The soft hand in the experiment can perceive squares, circles and a few other complex shapes.

Originality/value

The dual-signal comparison method proposed in this paper can detect a touch action by using the signal change trend when the working condition suddenly changes with the rough robotic model and sensing, thus improving the utilization value of the measured signal. The problems of large model errors and inaccurate sensors also negatively impact the use of other soft robots. It is generally difficult to achieve good results by directly using these models and sensors with the thinking of rigid robot analysis. The dual-signal comparison method in this paper can provide some reference for this aspect.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 July 2019

Zengkun Zhang, Jianjun Wu, Qi Shang, Qiang Jiang, Junzhou Yang and Ruichao Guo

When manufacturing an arc-shaped tube product using push bending process, the transition zone and outfeed zone will inevitably occur. Transition zone and outfeed zone are caused…

Abstract

Purpose

When manufacturing an arc-shaped tube product using push bending process, the transition zone and outfeed zone will inevitably occur. Transition zone and outfeed zone are caused by the kinematical motion of mobile tools. The existence of transition zone and outfeed zone will lead to a big deviation between the forming product and desired shape. To improve the forming quality of arc-shaped products in push bending, the transition zone and outfeed zone are investigated in this paper.

Design/methodology/approach

A piecewise function is used to describe the bending characteristics along bending line, in which a series of vibration parameters are extracted and considered as control values.

Findings

The new strategy is helpful for finding the relationship between tools motion and curvature distribution and improving the bending lines design procedure in flexible push bending.

Originality/value

The new strategy is helpful for finding the relationship between tools motion and curvature distribution and improving the bending lines design procedure in flexible push bending.

Details

Engineering Computations, vol. 36 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 1952

S.S. Gill

The paper reports experiments carried out on beams in pure bending. The material used was a cast magnesium alloy AZ855. The beam sections were rectangular, circular, I‐section…

Abstract

The paper reports experiments carried out on beams in pure bending. The material used was a cast magnesium alloy AZ855. The beam sections were rectangular, circular, I‐section, T‐scction and diamond. One series of tests was carried out up to 1 per cent fibre strain. A second series of tests was carried out up to fracture. Tension and compression tests were also made on the material. The experimental results show conclusively that the usual theory of plastic bending is correct and that the tension‐compression stress‐strain curve of the material may be used to determine the bending moment‐curvature relationships, etc., for a beam. Measurements of neutral axis shift also confirm the predictions of plastic bending theory.

Details

Aircraft Engineering and Aerospace Technology, vol. 24 no. 11
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 August 1997

Jinlian Hu, Siuping Chung and Ming‐tak Lo

Presents a study of the relationships between fabric drapeability and seam allowance, seam position and seam directions in terms of drape coefficient, bending length and draped…

702

Abstract

Presents a study of the relationships between fabric drapeability and seam allowance, seam position and seam directions in terms of drape coefficient, bending length and draped profile. Concludes that by the results obtained from the sewn specimens, the draped profile of a fabric without a seam can be predicted and proved by extended experimental work. Suggests that the knowledge gained from present research on fabric drape will be useful in the determination of the drape profile on garment in practical use. Moreover, it has significant value in paving the way for establishing clothing CAD systems, and sheds light on fundamental mechanisms operating in fabric drape behaviour.

Details

International Journal of Clothing Science and Technology, vol. 9 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Content available
Article
Publication date: 1 February 2003

65

Abstract

Details

Industrial Robot: An International Journal, vol. 30 no. 1
Type: Research Article
ISSN: 0143-991X

Article
Publication date: 5 June 2023

Zengkun Zhang, Dongru Li, Jianjun Wu, Muzamil Muhammad and Yang Li

When bending a large diameter thin-walled tube, the thickn ess of outer side wall will reduce greatly, which leads to a decrease of structural strength of the tube. To solve this…

Abstract

Purpose

When bending a large diameter thin-walled tube, the thickn ess of outer side wall will reduce greatly, which leads to a decrease of structural strength of the tube. To solve this problem, this paper investigated the deformation principles of an eccentric tube in the rotary draw bending process, trying to find a way to reduce the wall thickness difference between inner and outer diameters.

Design/methodology/approach

An finite element model is established for analyzing the deformation of an eccentric tube in rotary draw bending process. The wall thickness distribution of the formed pipe was analyzed along the axis and diameter, respectively.

Findings

It is found that there exists an optimal eccentricity between the inner and outer circle center of the tube cross-section. If the eccentricity of the tube is chosen properly, it is possible to get a bent tube with equal thickness of inner and outer side walls. In addition, it is also found the optimal eccentricity on the cross-section can be influenced by bending radius, wall thickness, diameter and bending angle. The optimal eccentricity increases greatly with the decreasing of bending radius, the increase of outer diameter and the increase of wall thickness. The influence of bending angle on the optimal eccentricity can be divided into two situations. When the bending angle is small, the optimal eccentricity increases with the increase of bending angle. When the bending angle exceeds a certain value, the pipe enters a stable forming state. The optimal eccentricity of the stable forming region does not change with the bending angle.

Originality/value

Such a research is beneficial for reducing the thickness difference between inner and outer side walls in the rotary draw bending process.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 9000