Search results

1 – 10 of 193
Open Access
Article
Publication date: 14 August 2017

Venkatesh Kodur and Mohannad Z. Naser

This purpose of this paper is to quantify the effect of local instability arising from high shear loading on response of steel girders subjected to fire conditions.

1506

Abstract

Purpose

This purpose of this paper is to quantify the effect of local instability arising from high shear loading on response of steel girders subjected to fire conditions.

Design/methodology/approach

A three-dimensional nonlinear finite element model able to evaluate behavior of fire-exposed steel girders is developed. This model, is capable of predicting fire response of steel girders taking into consideration flexural, shear and deflection limit states.

Findings

Results obtained from numerical studies show that shear capacity can degrade at a higher pace than flexural capacity under certain loading scenarios, and hence, failure can result from shear effects prior to attaining failure in flexural mode.

Originality/value

The developed model is unique and provides valuable insight (and information) to the fire response of typical hot-rolled steel girder subjected to high shear loading.

Details

PSU Research Review, vol. 1 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 7 December 2022

Milad Shabanian and Nicole Leo Braxtan

Thermomechanical behavior of intermediate-size beam-to-wall assemblies including Glulam-beams connected to cross-laminated timber (CLT) walls with T-shape steel doweled…

Abstract

Purpose

Thermomechanical behavior of intermediate-size beam-to-wall assemblies including Glulam-beams connected to cross-laminated timber (CLT) walls with T-shape steel doweled connections was investigated at ambient temperature (AT) and after and during non-standard fire exposure.

Design/methodology/approach

Three AT tests were conducted to evaluate the load-carrying capacity and failure modes of the assembly at room temperature. Two post-fire performance (PFP) tests were performed to study the impact of 30-min (PFP30) and 60-min (PFP60) partial exposure to a non-standard fire on the residual strength of the assemblies. The assemblies were exposed to fire in a custom-designed frame, then cooled and loaded to failure. A fire performance (FP) test was conducted to study the fire resistance (FR) during non-standard fire exposure by simultaneously applying fire and a mechanical load equal to 65% of the AT load carrying capacity.

Findings

At AT, embedment failure of the dowels followed by splitting failure at the Glulam-beam and tensile failure of the epoxy between the layers of CLT-walls were the dominant failure modes. In both PFP tests, the plastic bending of the dowels was the only observed failure mode. The residual strength of the assembly was reduced 14% after 30 min and 37% after 60 min of fire exposure. During the FP test, embedment failure of timber in contact with the dowels was the only major failure mode, with the maximum rate of displacement at 51 min into the fire exposure.

Originality/value

This is the first time that the thermomechanical performance of such an assembly with a full-contact connection is presented.

Details

Journal of Structural Fire Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 21 December 2022

Milad Shabanian and Nicole Leo Braxtan

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled…

Abstract

Purpose

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled connections and CLT beams at ambient temperature (AT), after and during non-standard fire exposure.

Design/methodology/approach

The first set of experiments was performed as a benchmark to find the load-carrying capacity of the assembly and investigate the failure modes at AT. The post-fire performance (PFP) test was performed to investigate the residual strength of the assembly after 30-min exposure to a non-standard fire. The fire-performance (FP) test was conducted to investigate the thermo-mechanical behavior of the loaded assembly during non-standard fire exposure. In this case, the assembly was loaded to 67% of AT load-carrying capacity and partially exposed to a non-standard fire for 75 min.

Findings

Embedment failure and plastic deformation of the dowels in the beam were the dominant failure modes at AT. The load-carrying capacity of the assembly was reduced to 45% of the ambient capacity after 30 min of fire exposure. Plastic bending of the dowels was the principal failure mode, with row shear in the mid-layer of the CLT beam and tear-out failure of the header sides also observed. During the FP test, ductile embedment failure of the timber in contact with the dowels was the major failure mode at elevated temperature.

Originality/value

This paper presents for the first time the thermo-mechanical performance of CLT beam-to-girder connections at three different thermal conditions. For this purpose, the outside layers of the CLT beams were aligned horizontally.

Highlights

  1. Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

  2. Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

  3. Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Open Access
Book part
Publication date: 1 May 2019

Roine Leiringer, Xiaoyu Mo and Yan Fang

The paper aims to investigate the emergence the Hong Kong Building Environmental Assessment Methods (HK BEAM) certification scheme and starts to explore the impact of BEAMs on the…

Abstract

Purpose

The paper aims to investigate the emergence the Hong Kong Building Environmental Assessment Methods (HK BEAM) certification scheme and starts to explore the impact of BEAMs on the building industry and the potential emergence and stabilisation of a green building field.

Design/Methodology/Approach

The research presented draws upon content analysis of all 19 versions of the HK BEAM scheme(s) as well as 94 policy reports. This is complemented by an investigation and collation of the participating companies in 100 HK BEAM certified projects. The theoretical framework of Strategic Action Fields is applied to explore the emergence of a potential green building field.

Findings

The findings are tentative, but they point out that a green building field is yet to emerge in Hong Kong.

Research Limitations/Implications

The research is still ongoing and parts of the analysis are yet to be finalised. Therefore, only tentative conclusions are drawn.

Practical implications:

From a practical perspective, the findings point towards a correlation between the memberships in the working committees charged with deciding on the content of the BEAMs and their content.

Originality/Value

So far, very little is known about how exactly BEAMs have come into being. Furthermore, their impact on working practices outside of “certified” projects has received little research attention. This research project is an attempt to rectify this.

Details

10th Nordic Conference on Construction Economics and Organization
Type: Book
ISBN: 978-1-83867-051-1

Keywords

Open Access
Article
Publication date: 16 October 2018

Christopher Arnold, Christoph Pobel, Fuad Osmanlic and Carolin Körner

The purpose of this study is the introduction and validation of a new technique for process monitoring during electron beam melting (EBM).

3305

Abstract

Purpose

The purpose of this study is the introduction and validation of a new technique for process monitoring during electron beam melting (EBM).

Design/methodology/approach

In this study, a backscatter electron detector inside the building chamber is used for image acquisition during EBM process. By systematic variation of process parameters, the ability of displaying different topographies, especially pores, is investigated. The results are evaluated in terms of porosity and compared with optical microscopy and X-ray computed tomography.

Findings

The method is capable of detecting major flaws (e.g. pores) and gives information about the quality of the resulting component.

Originality/value

Image acquisition by evaluating backscatter electrons during EBM process is a new approach in process monitoring which avoids disadvantages restricting previously investigated techniques.

Open Access
Article
Publication date: 14 August 2017

Raffaele Barretta, Luciano Feo, Raimondo Luciano, Francesco Marotti de Sciarra and Rosa Penna

This study aims to model scale effects in nano-beams under torsion.

Abstract

Purpose

This study aims to model scale effects in nano-beams under torsion.

Design/methodology/approach

The elastostatic problem of a nano-beam is formulated by a novel stress-driven nonlocal approach.

Findings

Unlike the standard strain-driven nonlocal methodology, the proposed stress-driven nonlocal model is mathematically and mechanically consistent. The contributed results are useful for the design of modern devices at nanoscale.

Originality/value

The innovative stress-driven integral nonlocal model, recently proposed in literature for inflected nano-beams, is formulated in the present submission to study size-dependent torsional behavior of nano-beams.

Details

PSU Research Review, vol. 1 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 29 July 2022

Serena Graziosi, Federico Maria Ballo, Flavia Libonati and Sofia Senna

This study aims to investigate the behaviour of soft lattices, i.e. lattices capable of reaching large deformations, and the influence of the printing process on it. The authors…

1526

Abstract

Purpose

This study aims to investigate the behaviour of soft lattices, i.e. lattices capable of reaching large deformations, and the influence of the printing process on it. The authors focused on two cell topologies, the body-centred cubic (BCC) and the Kelvin, characterized by a bending-dominated behaviour relevant to the design of energy-absorbing applications.

Design/methodology/approach

The authors analysed the experimental and numerical behaviour of multiple BCC and Kelvin structures. The authors designed homogenous and graded arrays of different dimensions. The authors compared their technical feasibility with two three-dimensional-printed technologies, such as the fused filament fabrication and the selective laser sintering, choosing thermoplastic polyurethane as the base material.

Findings

The results demonstrate that multiple design aspects determine how the printing process influences the behaviour of soft lattices. Besides, a graded distribution of the material could contribute to fine-tuning this behaviour and mitigating the influence of the printing process.

Practical implications

Despite being less explored than their rigid counterpart, soft lattices are now becoming of great interest, especially when lightweight, wearable and customizable solutions are needed. This study contributes to filling this gap.

Originality/value

Only a few studies analyse design and printing issues of soft lattices due to the intrinsic complexity of printing flexible materials.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 19 April 2023

Robin de Graaf, Rens Pater and Hans Voordijk

In the construction industry, an under researched area of study is how main contractor (MC) sub-contract design responsibilities to sub-contractor (SC). This lack of knowledge is…

Abstract

Purpose

In the construction industry, an under researched area of study is how main contractor (MC) sub-contract design responsibilities to sub-contractor (SC). This lack of knowledge is particularly serious in the context of delivery methods such as design and construct where design responsibilities are pushed down the supply chain. In this study, it is aimed to explore which level of design responsibility MCs sub-contract to SCs, for what reasons, and what the impact of sub-contracting decisions is on projects.

Design/methodology/approach

A qualitative in-depth multiple case study was conducted. Six sub-contracting cases were examined in two civil engineering projects. In each project, the MCs sub-contracted pre-fabricated beams, reinforcement and railing to SCs. Data collection included document analysis and interviews. A within-case and cross-case analysis was conducted to examine emerging empirical patterns. These patterns were used to elaborate theory and develop propositions.

Findings

MCs sub-contracted design responsibilities to SCs as suggested by literature. However, despite that sub-contracting was in keeping with literature, several problems were reported in the cases where MCs involved SCs no earlier than in the construction stage. This is not to be expected according to theory.

Originality/value

This study adds value to the sub-contracting field as it provides new insights in relationships between the level of design responsibilities sub-contracted and the impact of that on projects. The study also revealed new factors such as building information modelling (BIM) interoperability that should get more attention in sub-contracting.

Details

Frontiers in Engineering and Built Environment, vol. 3 no. 3
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 25 October 2022

Tawfik Abo Shdeed

This paper aims to study the resulting Brag peak and secondary particles (neutrons, photons, deuterons, alpha, helium_3, and tritons) along protons’ path in tissue.

459

Abstract

Purpose

This paper aims to study the resulting Brag peak and secondary particles (neutrons, photons, deuterons, alpha, helium_3, and tritons) along protons’ path in tissue.

Design/methodology/approach

MATLAB program and MCNP code were used to read abdomen Digital Imaging and Communications in Medicine (DICOM) images and build a 3D phantom to liver in purpose to study resulting Bragg peak and secondary particles (neutrons, photons, deuterons, alpha, helium_3 and tritons) along protons’ path.

Findings

From the study, it was found that Bragg peak varies from a 2 cm depth within the tissue for 50 MeV protons to a 14.2 cm depth for 150 MeV protons; in the other hand, the total deposited energy decreases from 0.656 [MeV/g]/proton, at the depth 2 cm and 50 MeV protons, to the value 0.220 [MeV/g]/proton, at the depth 14 cm and 150 MeV protons.

Originality/value

As for the flow rate of secondary neutrons and photons, the flow rate of secondary neutrons takes a maximum value (peak) in the middle of the proton path, i.e. when the energy of the protons drops to the value of 30 MeV, and this maximum value of the neutrons flow rate is accompanied by a maximum value of the photon flow rate, as for the rest of the secondary particles produced (alpha particles, deuterons, electrons, tritons and triple helium), they deposit most of their energy locally.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 1
Type: Research Article
ISSN: 1985-9899

Keywords

1 – 10 of 193