Search results

1 – 10 of over 1000
Article
Publication date: 22 January 2024

Cong Liu, Yanguo Yin and Rongrong Li

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Abstract

Purpose

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Design/methodology/approach

Cu-Bi mixed powder was ball milled at different ball–material ratios, and the preparation of Cu-Bi alloy materials was achieved through powder metallurgy technology. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy were conducted to study the microstructure and phase composition of the mixed powder. The apparent density and flow characteristics of mixed powders were investigated using a Hall flowmeter. Tests on the crushing strength, impact toughness and tribological properties of self-lubricating alloy materials were conducted using a universal electronic testing machine, 300 J pendulum impact testing machine and M200 ring-block tribometer, respectively.

Findings

With the increase in ball–material ratio, the spherical copper matrix particles in the mixed powder became lamellar, the mechanical properties of the material gradually reduced, the friction coefficient of the material first decreased and then stabilized and the wear rate decreased initially and then increased. The increase in the ball–material ratio resulted in the fine network distribution of the Bi phase in the copper alloy matrix, which benefitted its enrichment on the worn surface for the formation a lubricating film and improvement of the material’s tribological performance. However, a large ball–material ratio can excessively weaken the mechanical properties of the material and reduce its wear resistance.

Originality/value

The effects of ball–material ratio on Cu-Bi mixed powder and material properties were clarified. This work provides a reference for the mechanical alloying process and its engineering applications.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 7 February 2024

Burcu Küçükoğlu Doğan, Abdurrahim Dal, Görkem Ağören and Tuncay Karaçay

In industry applications, polymer hybrid bearings have become widespread in recent years owing to the lack of lubricant requirements, particularly in areas requiring hygiene. The…

Abstract

Purpose

In industry applications, polymer hybrid bearings have become widespread in recent years owing to the lack of lubricant requirements, particularly in areas requiring hygiene. The additive manufacturing method gives significant advantages to have complex machinery parts, and it has become popular in the industry in recent years. However, it has some inherent disadvantages caused by layered deposition/addition of the materials, and the probability of the localized defect is much higher than in the conventional manufacturing methods. This study aims to investigate the effect of the outer race defect on the characteristics of vibration and service lifetime of hybrid polymer ball bearings produced with the stereolithography (SLA) additive manufacturing method.

Design/methodology/approach

In this study, polymer bearings’ races were produced with the additive manufacturing SLA method, and the outer race defect was analyzed with measured vibrations.

Findings

The results show that the additive manufacturing method suggests a practical solution for producing a polymer hybrid ball bearing. On the other hand, the hybrid three-dimensional-printed bearing, which has an outer race defect, worked for approximately 8 h without any problems under a 1 kg load and a shaft speed of around 1,000 rpm. In addition, when there is a defect in the outer and/or inner race of the ball bearing, the crest factor and kurtosis of the vibration are higher than faultless ball bearing, as expected.

Originality/value

This paper provides valuable information on the lifetime and vibration characteristics of polymer hybrid ball bearing produced by means of additive manufacturing.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0183/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2024

Zhicai Du, Qiang He, Hengcheng Wan, Lei Zhang, Zehua Xu, Yuan Xu and Guotao Li

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or…

Abstract

Purpose

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or nano-CeO2) and composite additives (nano-TiO2–CeO2) in lithium complex greases and to analyze the mechanism of their influence using a variety of characterization tools.

Design/methodology/approach

The morphology and microstructure of the nanoparticles were characterized by scanning electron microscopy and an X-ray diffractometer. The tribological properties of different nanoparticles, as well as compounded nanoparticles as greases, were evaluated. Average friction coefficients and wear diameters were analyzed. Scanning electron microscopy and three-dimensional topography were used to analyze the surface topography of worn steel balls. The elements present on the worn steel balls’ surface were analyzed using energy-dispersive spectroscopy and X-ray photoelectron spectroscopy.

Findings

The results showed that the coefficient of friction (COF) of grease with all three nanoparticles added was low. The grease-containing composite nanoparticles exhibited a lower COF and superior anti-wear properties. The sample displayed its optimal tribological performance when the ratio of TiO2 to CeO2 was 6:4, resulting in a 30.5% reduction in the COF and a 29.2% decrease in wear spot diameter compared to the original grease. Additionally, the roughness of the worn spot surface and the maximum depth of the wear mark were significantly reduced.

Originality/value

The main innovation of this study is the first mixing of nano-TiO2 and nano-CeO2 with different sizes and properties as compound lithium grease additives to significantly enhance the anti-wear and friction reduction properties of this grease. The results of friction experiments with a single additive are used as a basis to explore the synergistic lubrication mechanism of the compounded nanoparticles. This innovative approach provides a new reference and direction for future research and development of grease additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0291/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 October 2023

Zhixiong Chen, Weishan Long, Li Song and Xinglin Li

This paper aims to research the tribological and dynamic characteristics of aeroengine hybrid ceramic bearings through wear experiments and simulation analysis.

Abstract

Purpose

This paper aims to research the tribological and dynamic characteristics of aeroengine hybrid ceramic bearings through wear experiments and simulation analysis.

Design/methodology/approach

First, the authors carried out wear experiments on Si3N4–GCr15 and GCr15–GCr15 friction pairs through the ball-disc wear test rig to explore the tribological properties of their materials. Second, using ANSYS/LS-DYNA simulation software, the dynamic simulation analysis of hybrid bearings was carried out under certain working conditions, and the dynamic contact stress of all-steel bearings of the same size was simulated and compared. Finally, the change of the maximum contact stress of the main bearing under the change of load and rotation speed was studied.

Findings

The results show that the Si3N4–GCr15 pair has better tribological performance. At the same time, under the conditions of high speed and heavy load, the simulation analysis shows that the contact stress between the ceramic ball and the raceway of the ring is smaller than the steel ball. That is, hybrid bearings have better transient mechanical properties than all-steel bearings. With the speed increasing to 12,000 r/min, the maximum stress point will shift in the inner and outer rings.

Originality/value

In this study, the tribological and transient mechanical properties of Si3N4 material were comprehensively analyzed through wear experiments and dynamic simulation analysis, which provided a reference for the design of hybrid bearings for next-generation aeroengines.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 August 2023

Shuxun Li, Mengyao Yu, Hanlin Wu, Yinggang Hu, Tingqian Ma and Bincai Liu

The purpose of this study is to address the issue that the traditional V-shaped ball valve profile shape is limiting the flow control characteristics in a series structure and to…

Abstract

Purpose

The purpose of this study is to address the issue that the traditional V-shaped ball valve profile shape is limiting the flow control characteristics in a series structure and to optimize the design profile by proposing an open-hole profile.

Design/methodology/approach

This paper proposes a Gaussian process regression surrogate model based on the genetic algorithm optimization of swarm intelligence, combined with the Expected Improvement point addition criterion, to optimize and correct the design profile. The flow regulation performance of the optimized V-shaped regulating ball valve is verified through a combination of numerical simulation and experiment.

Findings

The results demonstrate that the optimized V-shaped regulating ball valve has higher flow regulation accuracy and a more stable flow regulation process. After optimization, the flow characteristic curve of the spool is closer to the ideal equal percentage characteristic. The simulation results of the flow field are consistent with the experimental results.

Originality/value

The proposed method significantly reduces the optimization time, has higher efficiency and solves the problem that traditional optimization methods struggle with, which is ensuring optimal flow regulation performance. Compared to the traditional trial-and-error optimization method, the proposed method is more effective. The feasibility of the method is supported by experimental results.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 August 2023

Jian Sun, Xin Fang, Jinmei Yao, Zhe Zhang, Renyun Guan and Guangxiang Zhang

The study aims to the distribution rule of lubricating oil film of full ceramic ball bearing and improve its performance and life.

Abstract

Purpose

The study aims to the distribution rule of lubricating oil film of full ceramic ball bearing and improve its performance and life.

Design/methodology/approach

The paper established an analysis model based on the fluid–solid conjugate heat transfer theory for full ceramic ball bearings. The distribution of flow, temperature and pressure field of bearings under variable working conditions is analyzed. Meanwhile, the mathematical model of elastohydrodynamic lubrication (EHL) of full ceramic ball bearings is established. The numerical analysis is used to study the influence of variable working conditions on the lubricant film thickness and pressure distribution of bearings. The temperature rise test of full ceramic ball bearing under oil lubrication was carried out to verify the correctness of simulation results.

Findings

As the speed increased, the oil volume fraction in full ceramic ball bearing decreased and the surface pressure of rolling element increased. The temperature rise of full ceramic ball bearings increases with increasing speed and load. The lubricant film thickness of full ceramic ball bearing is positively correlated with speed and negatively correlated with load. The pressure of lubricating film is positively correlated with speed and load. The test shows that the higher inner ring speed and radial load, the higher the steady-state temperature rise of full ceramic ball bearing. The test results are in high agreement with simulation results.

Originality/value

Based on the fluid–solid conjugate heat transfer theory and combined with Reynolds equation, lubricating oil film thickness formula, viscosity temperature and viscosity pressure formula. The thermal analysis model and EHL mathematical model of ceramic ball bearings are established. The flow field, temperature field and pressure field distribution of the full ceramic ball bearing are determined. And the thickness and pressure distribution of lubricating oil film in the contact area of full ceramic ball bearing were determined.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0126/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 February 2024

Varsha Vihan, V.P. Singh, Pramila Umaraw, Akhilesh Kumar Verma, Shardanand Verma and Chirag Singh

The purpose of this study is to investigate the impact of integrating “Licorice powder” into curd balls on their storage stability under refrigeration conditions. Through this…

Abstract

Purpose

The purpose of this study is to investigate the impact of integrating “Licorice powder” into curd balls on their storage stability under refrigeration conditions. Through this examination, this study aims to evaluate the potential effects of licorice powder on extending the shelf life, maintaining quality attributes and preserving the overall stability of curd balls when stored at refrigeration temperatures.

Design/methodology/approach

Licorice powder, in varying quantities (1%, 2% and 3%), was incorporated into curd balls alongside a control group lacking licorice (0%). These batches were subsequently stored for 25 days under refrigeration at a temperature of 4 ± 1ºC, using aerobic packaging conditions. During this storage period, the samples were regularly monitored and analyzed for various parameters to assess changes in their properties and qualities.

Findings

The findings indicated that in the treatment groups, pH and titratable acidity were notably lower than those in the control group (p = 0.05). Curd balls enriched with licorice powder exhibited significantly higher levels of 2, 2-diphenyl-1-picrylhydrazyl, 2-2-azinobis-3ethylbenthiazoline-6-sulphonic acid and total phenolic contents compared to the control (p = 0.05). Furthermore, curd balls containing licorice powder displayed notably lower levels of peroxide, thiobarbituric acid reactive substances and free fatty acids in comparison to the control (p = 0.05). Among all samples, T3 (3%) demonstrated significantly less microbial growth (p = 0.05) than the other groups. Conversely, the sensory panel rated T2 significantly higher than T3 (p = 0.05).

Originality/value

The investigation highlights that curd balls enriched with 2.0% licorice powder demonstrated significant efficacy in preventing the deterioration of physicochemical attributes, enhancing antioxidant capacity, restraining lipid oxidation, curbing microbial growth and ultimately exhibiting the most favorable organoleptic properties among the tested variations. This finding underscores the potential of incorporating 2.0% licorice powder as an effective agent for bolstering the storage stability and overall quality of curd balls during refrigerated storage.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Book part
Publication date: 14 December 2023

Philipp T. Schneider, Vincent Buskens and Arnout van de Rijt

Diffusion studies investigate the propagation of behavior, attitudes, or beliefs across a networked population. Some behavior is binary, e.g., whether or not to install solar…

Abstract

Diffusion studies investigate the propagation of behavior, attitudes, or beliefs across a networked population. Some behavior is binary, e.g., whether or not to install solar panels, while other behavior is continuous, e.g., wastefulness with plastic. Similarly, attitudes and beliefs often allow nuance, but can become practically binary in polarized environments. We argue that this property of behavior and attitudes – whether they are binary or continuous – should critically affect whether a population becomes homogenous in its adoption of that behavior. Models show that only continuous behavior converges across a network. Specifically, binary behavior allows local convergence, as multiple states can be local majorities. Continuous behavior becomes uniform across the network through a logic of communicating vessels. We present a model comparing the diffusion of both types of behavior and report on a laboratory experiment that tests it. In the model, actors have to distribute an investment over two options, while a majority receives information that points to the optimal option and a minority receives misguided information that points toward the other option. We predict that when adjacent persons receive misguided information this can hinder convergence toward optimal investment behavior in small networked groups, especially when subjects cannot split their investment, i.e., binary choice. Results falsify our theoretical predictions: Although investment decisions are significantly negatively affected by local majorities only in the binary condition, this difference with the continuous condition is not itself significant. Binary and continuous behavior therefore achieve comparable incidences of optimal investment in the experiment. The failure of the theoretical predictions appears due to a substantial level of error in decision-making, which prevents local majorities from locking in on a suboptimal behavior.

Details

Advances in Group Processes
Type: Book
ISBN: 978-1-83797-477-1

Keywords

Article
Publication date: 22 November 2023

Shoufan Cao, Zhang Xu, Yi Liang and Stefano Mischler

The aim of this study is to experimentally analyze the friction and wear responses of different steels to different surface films generated in oil-lubricated tribological contacts.

Abstract

Purpose

The aim of this study is to experimentally analyze the friction and wear responses of different steels to different surface films generated in oil-lubricated tribological contacts.

Design/methodology/approach

Tribological experiments were conducted using a 100Cr6 bearing ball sliding against a V155 carbon steel disk and 316L stainless steel disk, respectively. Lubricants with additives known to form zinc dialkyl-dithiophosphate (ZDDP) or Ca tribofilms were used.

Findings

Both of the ZDDP and Ca tribofilms helped stabilize the friction coefficient of the carbon steel and stainless steel. The ZDDP tribofilm could effectively protect the carbon steel from wear, in contrast to the stainless steel, whereas the wear of both carbon steel and stainless steel could be significantly reduced by the Ca tribofilm. In the case of neither ZDDP nor Ca tribofilms formation, the 100Cr6 ball was worn by the V155 disk and generated a special surface topography. A polishing wear mechanism was proposed to explain the wear of the 100Cr6 ball.

Originality/value

This study clearly shows the different friction and wear responses of steels to the different surface films and the response is dependent on the tested steel.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000