Search results

1 – 10 of 66
Article
Publication date: 1 April 2009

M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, W. N. Roy and R.R. Skaggs

A large‐strain/high‐deformation rate model for clay‐free sand recently proposed and validated in our work [1,2], has been extended to sand containing relatively small (< 15vol.%…

Abstract

A large‐strain/high‐deformation rate model for clay‐free sand recently proposed and validated in our work [1,2], has been extended to sand containing relatively small (< 15vol.%) of clay and having various levels of saturation with water. The model includes an equation of state which represents the material response under hydrostatic pressure, a strength model which captures material behavior under elastic‐plastic conditions and a failure model which defines conditions and laws for the initiation and evolution of damage/failure in the material. The model was validated by comparing the computational results associated with detonation of a landmine in clayey sand (at different levels of saturation with water) with their computational counterparts.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2007

M. Grujicic, B. Pandurangan, I. Haque, B.A. Cheeseman, W.N. Roy and R.R. Skaggs

The kinematic response (including plastic deformation, failure initiation and fracture) of a soft‐skinned vehicle (represented by a F800 series single‐unit truck) to the…

Abstract

The kinematic response (including plastic deformation, failure initiation and fracture) of a soft‐skinned vehicle (represented by a F800 series single‐unit truck) to the detonation of a landmine shallow‐buried in (either dry or saturated sand) underneath the vehicle’s front right wheel is analyzed computationally. The computational analysis included the interactions of the gaseous detonation products and the sand ejecta with the vehicle and the transient non‐linear dynamics response of the vehicle. A frequency analysis of the pressure versus time signals and visual observation clearly show the differences in the blast loads resulting from the landmine detonation in dry and saturated sand as well as the associated kinematic response of the vehicle. It is noted that the dominant vehicle structural response to the blast is similar to the first torsional structural mode shape obtained through an eigenvalue analysis of the system. Tailoring the vehicle modal response may result in more desirable modes of failure.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 2008

M. Grujicic, B. Pandurangan, G.M. Mocko, S.T. Hung, B.A. Cheeseman, W.N. Roy and R.R. Skaggs

Detonation of landmines buried to different depths in water‐saturated sand is analyzed computationally using transient non‐linear dynamics simulations in order to quantify impulse…

Abstract

Detonation of landmines buried to different depths in water‐saturated sand is analyzed computationally using transient non‐linear dynamics simulations in order to quantify impulse loading. The computational results are compared with the corresponding experimental results obtained using the Vertical Impulse Measurement Fixture (VIMF), a structural mechanical device that enables direct experimental determination of the blast‐loading impulse. The structural‐dynamic/ballistic response of the Rolled Homogenized Armor (RHA) used in the construction of the VIMF witness plate and the remainder of the VIMF and the hydrodynamic response of the TNT high‐energy explosive of a mine and of the air surrounding the VIMF are represented using the standard materials models available in literature. The structural‐dynamic/ballistic response of the sand surrounding the mine, on the other hand, is represented using our recent modified compaction model which incorporates the effects of degree of saturation and the rate of deformation, two important effects which are generally neglected in standard material models for sand. The results obtained indicate that the use of the modified compaction model yields a substantially better agreement with the experimentally‐determined impulse loads over the use the original compaction model. Furthermore, the results suggest that, in the case of fully saturated sand, the blast loading is of a bubble type rather than of a shock type, i.e. the detonation‐induced momentum transfer to the witness plate is accomplished primarily through the interaction of the sand‐over‐burden (propelled by the high‐pressure expanding gaseous detonation by‐products) with the witness plate.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 September 2012

M. Grujicic, A. Arakere, B. Pandurangan, A. Grujicic, A. Littlestone and R. Barsoum

Polyurea falls into a category of elastomeric co‐polymers in which, due to the presence of strong hydrogen bonding, the microstructure is of a heterogeneous nature and consists of…

Abstract

Purpose

Polyurea falls into a category of elastomeric co‐polymers in which, due to the presence of strong hydrogen bonding, the microstructure is of a heterogeneous nature and consists of a compliant/soft matrix and stiff/hard nanometer size hard domains. Recent investigations have shown that the use of polyurea as an external or internal coating/lining had substantially improved ballistic‐penetration resistance of metallic structures. The present work aims to use computational methods and tools in order to assess the shock‐mitigation ability of polyurea when used in the construction of different components (suspension‐pads, internal lining and external coating) of a combat helmet.

Design/methodology/approach

Shock‐mitigation capability of combat helmets has become an important functional requirement as shock‐ingress into the intra‐cranial cavity is known to be one of the main causes of traumatic brain injury (TBI). To assess the shock mitigation capability of polyurea, a combined Eulerian/Lagrangian fluid/solid transient non‐linear dynamics computational analysis of an air/helmet/head core sample is carried out and the temporal evolution of the axial stress and particle velocities (for different polyurea augmented helmet designs) are monitored.

Findings

The results obtained show that improvements in the shock‐mitigation performance of the helmet are obtained only in the case when polyurea is used as a helmet internal lining and that these improvements are relatively small. In addition, polyurea is found to slightly outperform conventional helmet foam, but only under relatively strong (greater than five atm) blastwave peak overpressures.

Originality/value

The present approach studies the effect of internal linings and external coatings on combat helmet blast mitigation performance.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2006

M. Grujicic, B. Pandurangan and B. A. Cheeseman

A nonlinear‐dynamics transient computational analysis of the explosion phenomena associated with detonation of 100g of C4 high‐energy explosive buried at different depths in sand…

Abstract

A nonlinear‐dynamics transient computational analysis of the explosion phenomena associated with detonation of 100g of C4 high‐energy explosive buried at different depths in sand is carried out using the AUTODYN computer program. The results obtained are compared with the corresponding experimental results obtained in Ref. [1]. To validate the computational procedure and the materials constitutive models used in the present work, a number of detonation‐related phenomena such as the temporal evolutions of the shape and size of the over‐burden sand bubbles and of the detonation‐products gas clouds, the temporal evolutions of the side‐on pressures in the sand and in air, etc. are determined and compared with their experimental counterparts. The results obtained suggest that the agreement between the computational and the experimental results is reasonable at short postdetonation times. At longer post‐detonation times, on the other hand, the agreement is less satisfactory primarily with respect to the size and shape of the sand crater, i.e. with respect to the volume of the sand ejected during explosion. It is argued that the observed discrepancy is, at least partly, the result of an inadequacy of the generic materials constitutive model for the sand which does not explicitly include the important effects of the sand particle size and the particle size distribution, as well as the effects of moisture‐level controlled inter‐particle friction and cohesion. It is further shown that by a relatively small adjustment of the present materials model for sand to include the potential effect of moisture on inter‐particle friction can yield a significantly improved agreement between the computed and the experimentally determined sand crater shapes and sizes.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 November 2011

M. Grujicic, W.C. Bell, B. Pandurangan, C.‐F. Yen and B.A. Cheeseman

Propagation of planar (i.e. one directional), longitudinal (i.e. uniaxial strain), steady (i.e. time‐invariant) structured shock waves within metal matrix composites (MMCs) is…

Abstract

Purpose

Propagation of planar (i.e. one directional), longitudinal (i.e. uniaxial strain), steady (i.e. time‐invariant) structured shock waves within metal matrix composites (MMCs) is studied computationally. Waves of this type are typically generated during blast‐wave loading or ballistic impact and play a major role in the way blast/ballistic impact loads are introduced in, and applied to, a target structure. Hence, the knowledge of the basic physics of propagation of these waves is critical for designing structures with superior blast and impact protection capabilities. The purpose of this paper is to help advance the use of computational engineering analyses and simulations in the areas of design and application of the MMC protective structures.

Design/methodology/approach

To derive the overall response of the composite material to shock type loading, a dynamic‐mixture model is employed. Within this model, the known constitutive responses of the constituent materials are combined using the appropriate mixture rules. These mixture rules are of a dynamic character since they depend on the current state of the composite material and cannot be applied prior to the beginning of the analysis.

Findings

The approach is applied to a prototypical MMC consisting of an aluminum matrix and SiC particulates. Both the intermediate‐to‐strong shock regime (in which the contribution of stress deviators to the stress field can be ignored) and the weak shock regime (in which stress deviators provide a significant contribution to the stress field) are investigated. Finally, the computational results are compared with their experimental counterparts available in the open literature in order to validate the computational procedure employed.

Originality/value

Prediction of the spallation‐type failure in a metal‐matrix composite material (modeled using the dynamic‐mixture model) has not been done previously.

Details

Multidiscipline Modeling in Materials and Structures, vol. 7 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 August 2012

M. Grujicic, B. d'Entremont, B. Pandurangan, A. Grujicic, M. LaBerge, J. Runt, J. Tarter and G. Dillon

Blast‐induced traumatic brain injury (TBI) is a signature injury of the current military conflicts. Among the different types of TBI, diffuse axonal injury (DAI) plays an…

Abstract

Purpose

Blast‐induced traumatic brain injury (TBI) is a signature injury of the current military conflicts. Among the different types of TBI, diffuse axonal injury (DAI) plays an important role since it can lead to devastating effects in the inflicted military personnel. To better understand the potential causes associated with DAI, this paper aims to investigate a transient non‐linear dynamics finite element simulation of the response of the brain white matter to shock loading.

Design/methodology/approach

Brain white matter is considered to be a heterogeneous material consisting of fiber‐like axons and a structure‐less extracellular matrix (ECM). The brain white matter microstructure in the investigated corpus callosum region of the brain is idealized using a regular hexagonal arrangement of aligned equal‐size axons. Deviatoric stress response of the axon and the ECM is modeled using a linear isotropic viscoelastic formulation while the hydrostatic stress response is modeled using a shock‐type equation of state. To account for the stochastic character of the brain white matter microstructure and shock loading, a parametric study is carried out involving a factorial variation of the key microstructural and waveform parameters.

Findings

The results obtained show that the extent of axon undulations and the strength of axon/ECM bonding profoundly affect the spatial distribution and magnitude of the axonal axial normal and shear stresses (the stresses which can cause diffuse axonal injury).

Originality/value

The present approach enables a more accurate determination of the mechanical behavior of brain white matter when subjected to a shock.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 November 2013

Mica Grujicic, Jennifer Snipes, Subrahmanian Ramaswami, Rohan Galgalikar, James Runt and James Tarter

Polyurea is an elastomeric two-phase co-polymer consisting of nanometer-sized discrete hard (i.e. high glass transition temperature) domains distributed randomly within a soft…

Abstract

Purpose

Polyurea is an elastomeric two-phase co-polymer consisting of nanometer-sized discrete hard (i.e. high glass transition temperature) domains distributed randomly within a soft (i.e. low glass transition temperature) matrix. A number of experimental investigations reported in the open literature clearly demonstrated that the use of polyurea external coatings and/or internal linings can significantly increase blast survivability and ballistic penetration resistance of target structures, such as vehicles, buildings and field/laboratory test-plates. When designing blast/ballistic-threat survivable polyurea-coated structures, advanced computational methods and tools are being increasingly utilized. A critical aspect of this computational approach is the availability of physically based, high-fidelity polyurea material models. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, an attempt is made to develop a material model for polyurea which will include the effects of soft-matrix chain-segment molecular weight and the extent and morphology of hard-domain nano-segregation. Since these aspects of polyurea microstructure can be controlled through the selection of polyurea chemistry and synthesis conditions, and the present material model enables the prediction of polyurea blast-mitigation capacity and ballistic resistance, the model offers the potential for the “material-by-design” approach.

Findings

The model is validated by comparing its predictions with the corresponding experimental data.

Originality/value

The work clearly demonstrated that, in order to maximize shock-mitigation effects offered by polyurea, chemistry and processing/synthesis route of this material should be optimized.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 November 2014

Mica Grujicic, Ramin Yavari, Jennifer Snipes, S. Ramaswami and Roshdy Barsoum

The purpose of this paper is to study the mechanical response of polyurea, soda-lime glass (glass, for short), polyurea/glass/polyurea and glass/polyurea/glass sandwich structures…

Abstract

Purpose

The purpose of this paper is to study the mechanical response of polyurea, soda-lime glass (glass, for short), polyurea/glass/polyurea and glass/polyurea/glass sandwich structures under dynamic-loading conditions involving propagation of planar longitudinal shockwaves.

Design/methodology/approach

The problem of shockwave generation, propagation and interaction with material boundaries is investigated using non-equilibrium molecular dynamics. The results obtained are used to construct basic shock Hugoniot relationships associated with the propagation of shockwaves through a homogeneous material (polyurea or glass, in the present case). The fidelity of these relations is established by comparing them with their experimental counterparts, and the observed differences are rationalized in terms of the microstructural changes experienced by the shockwave-swept material. The relationships are subsequently used to predict the outcome of the interactions of shockwaves with polyurea/glass or glass/polyurea material boundaries. Molecular-level simulations are next used to directly analyze the same shockwave/material-boundary interactions.

Findings

The molecular-level simulations suggested, and the subsequent detailed microstructural analyses confirmed, the formation of topologically altered interfacial regions, i.e. polyurea/glass and glass/polyurea interphases.

Originality/value

To the authors’ knowledge, the present work is a first attempt to analyze, using molecular-level simulation methods, the interaction of shockwaves with material boundaries.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 January 2009

M. Grujicic, G. Arakere, V. Sellappan, J.C. Ziegert and D. Schmueser

Among various efforts pursued to produce fuel efficient vehicles, light weight engineering (i.e. the use of low‐density structurally‐efficient materials, the application of…

Abstract

Among various efforts pursued to produce fuel efficient vehicles, light weight engineering (i.e. the use of low‐density structurally‐efficient materials, the application of advanced manufacturing and joining technologies and the design of highly‐integrated, multi‐functional components/sub‐assemblies) plays a prominent role. In the present work, a multi‐disciplinary design optimization methodology has been presented and subsequently applied to the development of a light composite vehicle door (more specifically, to an inner door panel). The door design has been optimized with respect to its weight while meeting the requirements /constraints pertaining to the structural and NVH performances, crashworthiness, durability and manufacturability. In the optimization procedure, the number and orientation of the composite plies, the local laminate thickness and the shape of different door panel segments (each characterized by a given composite‐lay‐up architecture and uniform ply thicknesses) are used as design variables. The methodology developed in the present work is subsequently used to carry out weight optimization of the front door on Ford Taurus, model year 2001. The emphasis in the present work is placed on highlighting the scientific and engineering issues accompanying multidisciplinary design optimization and less on the outcome of the optimization analysis and the computational resources/architecture needed to support such activity.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 66