Search results

1 – 10 of 995
Article
Publication date: 18 January 2013

S.H. Huo, F.S. Wang, Z. Yuan and Z.F. Yue

Computational efficiency is always the major concern in aircraft design. The purpose of this paper is to investigate an efficient aeroelasticity optimization design method…

Abstract

Purpose

Computational efficiency is always the major concern in aircraft design. The purpose of this paper is to investigate an efficient aeroelasticity optimization design method. Analysis of composite wing elastic axis is presented in the current study and its application on aeroelasticity optimization design is discussed.

Design/methodology/approach

Elastic axis consists of stiffness centers. The stiffness centers of eight cross sections are analyzed and the wing elastic axis is obtained through least‐squares procedure. In the analysis of the cross section stiffness center, the wing model is approximated by assuming the wing cross section as a thin walled structure with a single cell closed section and assuming the composite material to be a 3D anisotropic material. In aeroelasticity optimization design, objective functions are taken to be the wing weight and elastic axis position. Design variables are the thickness and area of wing components.

Findings

After aeroelasticity optimization design, the wing weight decreases while the divergent velocity increases. Meanwhile, it can achieve an expected result but costs much less computational time than the conventional method.

Practical implications

The results can be used for aircraft design or as an initial value for the next detailed optimization design.

Originality/value

The computational time can be dramatically reduced through the aeroelasticity optimization design based on the elastic axis. It is suitable for engineering applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 11 September 2009

F. Moussouni, S. Kreuawan, S. Brisset, F. Gillon, P. Brochet and L. Nicod

Analytical target cascading (ATC) is a hierarchical multi‐level design methodology. According to the state‐of‐the‐art, it is confirmed that for problems with unattainable targets…

Abstract

Purpose

Analytical target cascading (ATC) is a hierarchical multi‐level design methodology. According to the state‐of‐the‐art, it is confirmed that for problems with unattainable targets, strict design consistency cannot be achieved with finite weighting factors. This paper aims to address these issues.

Design/methodology/approach

A new formulation is proposed to improve the ATC convergence. The weighted sum of deviation metric is transformed into a multi‐objective formulation. An original optimization problem with a single global optimal solution is used as a benchmark.

Findings

It is found that carrying out an industrial application to design optimally a tram traction system demonstrates the efficiency of the proposed solution.

Originality/value

This paper is of value in showing how to improve the convergence of a multi‐level optimization algorithm by best management of the consistency constraints.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2009

M. Grujicic, G. Arakere, V. Sellappan, J.C. Ziegert and D. Schmueser

Among various efforts pursued to produce fuel efficient vehicles, light weight engineering (i.e. the use of low‐density structurally‐efficient materials, the application of…

Abstract

Among various efforts pursued to produce fuel efficient vehicles, light weight engineering (i.e. the use of low‐density structurally‐efficient materials, the application of advanced manufacturing and joining technologies and the design of highly‐integrated, multi‐functional components/sub‐assemblies) plays a prominent role. In the present work, a multi‐disciplinary design optimization methodology has been presented and subsequently applied to the development of a light composite vehicle door (more specifically, to an inner door panel). The door design has been optimized with respect to its weight while meeting the requirements /constraints pertaining to the structural and NVH performances, crashworthiness, durability and manufacturability. In the optimization procedure, the number and orientation of the composite plies, the local laminate thickness and the shape of different door panel segments (each characterized by a given composite‐lay‐up architecture and uniform ply thicknesses) are used as design variables. The methodology developed in the present work is subsequently used to carry out weight optimization of the front door on Ford Taurus, model year 2001. The emphasis in the present work is placed on highlighting the scientific and engineering issues accompanying multidisciplinary design optimization and less on the outcome of the optimization analysis and the computational resources/architecture needed to support such activity.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 29 July 2014

Hou Liqiang, Cai Yuanli, Zhang Rongzhi, Li Hengnian and Li Jisheng

A multi-disciplinary robust design optimization method for micro Mars entry probe (no more than 0.8 m in diameter) is proposed. The purpose of this paper is to design a Mars entry…

Abstract

Purpose

A multi-disciplinary robust design optimization method for micro Mars entry probe (no more than 0.8 m in diameter) is proposed. The purpose of this paper is to design a Mars entry probe, not only the geometric configuration, but the trajectory and thermal protection system (TPS). In the design optimization, the uncertainties of atmospheric and aerodynamic parameters are taken into account. The probability distribution information of the uncertainties are supposed to be unknown in the design. To ensure accuracy levels, time-consuming numerical models are coupled in the optimization. Multi-fidelity approach is designed for model management to balance the computational cost and accuracy.

Design/methodology/approach

Uncertainties which cannot defined by usual Gaussian probability distribution are modeled with degree of belief, and optimized through with multiple-objective optimization method. The optimization objectives are set to be the thermal performance of the probe TPS and the corresponding belief values. Robust Pareto front is obtained by an improved multi-objective density estimator algorithm. Multi-fidelity management is performed with an Artificial Neural Network (ANN) surrogate model. Analytical model is used first, and then with the improvement of accuracy, rather complex numerical models are activated. ANN updates the database during the optimization, and makes the solutions finally converge to a high-level accuracy.

Findings

The optimization method provides a way for conducting complex design optimization involving multi-discipline and multi-fidelity models. Uncertainty effects are analyzed and optimized through multi-disciplinary robust design. Because of the micro size, and uncertain impacts of aerodynamic and atmospheric parameters, simulation results show the performance trade-off by the uncertainties. Therefore an effective robust design is necessary for micro entry probe, particularly when details of model parameter are not available.

Originality/value

The optimization is performed through a new developed multi-objective density estimator algorithm. Affinity propagation algorithm partitions adaptively the samples by passing and analyzing messages between data points. Local principle component techniques are employed to resample and reproduce new individuals in each cluster. A strategy similar to NSGA-II selects data with better performance, and converges to the Pareto front. Models with different fidelity levels are incorporated in the multi-disciplinary design via ANN surrogate model. Database of aerodynamic coefficients is updated in an online manner. The computational time is greatly reduced while keeping nearly the same accuracy level of high fidelity model.

Details

Engineering Computations, vol. 31 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 September 2022

Vinay C.A. and Kumar G.N.

Development or upgradation of airplanes requires many different analyses, e.g. thermal, aerodynamic, structural and safety. Similar studies were performed during configuration…

Abstract

Purpose

Development or upgradation of airplanes requires many different analyses, e.g. thermal, aerodynamic, structural and safety. Similar studies were performed during configuration change design of commuter category aircraft equipped with pusher turboprop engines. In this paper, thermo-fluid analyses of interactions of the new propulsion system in tractor configuration with selected elements of airplane skin are carried out. This study aims to check the airplane skin material, and its geometry, including the Plexiglas passenger window material degradation, due to hot exhaust gas plume impingement. The impact of change in exhaust stub angle and asymmetric inboard-outboard stubs on the jet thrust at various flight operating conditions like minimum off-route altitude and cruise performance is assessed.

Design/methodology/approach

Commercial software-based numerical models were developed. In the first stage, heat and fluid flow analysis was performed over a twin-engine airplane’s nacelle, wing and center fuselage with its powerplant mounted in the high wing configuration. Subsequently, numerical simulations of thermal interactions between the hot exhaust gases, which leave the exhaust system close to the nacelle, flaps and the center fuselage, were estimated for various combinations of exhaust stub angles with asymmetry between inboard-outboard stubs at different airplane configurations and operating conditions.

Findings

The results of the simulations are used to recommend modifications to the design of the considered airplane in terms of material selection and/or special coatings. The importance and impact of exhaust jet thrust on the overall aircraft performance are investigated.

Originality/value

The advanced numerical model for the exhaust jet-airplane skin thermal interaction was developed to estimate the temperature effects on the propeller blades and aircraft fuselage surfaces during different flight operating conditions with multiple combinations of stub orientations.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 November 2015

W. Li, Y Wen and L X Li

The purpose of this paper is to improve the framework of classical collaborative optimization (CCO) so as to solve the multi-disciplinary optimization problems with parametric and…

Abstract

Purpose

The purpose of this paper is to improve the framework of classical collaborative optimization (CCO) so as to solve the multi-disciplinary optimization problems with parametric and parameter-free variables, and therefore an improved collaborative optimization (ICO) is proposed.

Design/methodology/approach

To clarify the relation of design variables, the optimization problem is classified into three general case. For each case, the respective treatment is suggested for coupled or uncoupled variables in the framework of the ICO.

Findings

The decoupling treatment suggested in the ICO framework not only avoids the iteration divergence and thus optimization failure, but increases the optimal design space to some extent. The method is validated by optimizing an aircraft assembly and a high-speed train assembly.

Originality/value

The two practical examples proves that the present ICO succeeds in solving the problem that the CCO failed to, also gives the optimal results better than those from the sequential optimization method.

Article
Publication date: 7 March 2016

Andrzej Iwaniuk, Witold Wiśniowski and Jerzy Żółtak

The purpose of this paper is to present application of multidisciplinary design optimisation (MDO) in redesign of a small composite aircraft. The redesign process was integration…

Abstract

Purpose

The purpose of this paper is to present application of multidisciplinary design optimisation (MDO) in redesign of a small composite aircraft. The redesign process was integration of the turboprop engine in a small composite aircraft. The process requires cooperation of specialists from many disciplines and definition of their tasks. For selected tasks, the authors present results of the calculation.

Design/methodology/approach

The authors used collaborative optimisation (CO) algorithm to solve the problem. They decomposed this complex process into a set of tasks in different engineering/research disciplines and used techniques and methods specific for each task (research/engineering discipline) to find a proper solution. The computer-aided design (CAD), computational fluid dynamics (CFD) and computational structural mechanics (CSM) commercial software were used as common tools as well as intentionally developed computer programmes were used as basic tools in some tasks, in particular, for aerodynamic optimisation, calculation of load and stability of aircraft. The exchange of data between separate tasks allowed achieving the main goal of complex design process.

Findings

Selected optimisation algorithm, CO, proved efficient for the authors’ purposes. The effectiveness of multidisciplinary optimisation depends as much on organisational parameters as it does on technical and technology parameters.

Practical implications

Multidisciplinary optimisation needs to be an integral part of analysis and design process. The successful optimisation results allowed to meet the requirements and to proceed to the next phase of work – preparing technical documentation for manufacturing the components necessary for integration of the airplane with the new engine.

Originality/value

Presented results of design process are a valuable example of how to achieve the final goal in an ongoing project.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2016

Tanja Führer, Christian Willberg, Sebastian Freund and Falk Heinecke

To obtain a good start configuration in the early design phase, simulation tools are used to create a large number of product designs and to evaluate their performance. To reduce…

Abstract

Purpose

To obtain a good start configuration in the early design phase, simulation tools are used to create a large number of product designs and to evaluate their performance. To reduce the effort for the model generation, analysis and evaluation, a design environment for thin-walled lightweight structures (DELiS) with the focus on structural mechanics of aircrafts has been developed.

Design/methodology/approach

The core of DELiS is a parametric model generator, which creates models of thin-walled lightweight structures for the aircraft preliminary design process. It is based on the common parametric aircraft configuration schema (CPACS), which is an abstract aircraft namespace. DELiS facilitates interfaces to several commercial and non-commercial finite element solvers and sizing tools.

Findings

The key principles and the advantages of the DELiS process are illustrated. Also, a convergence study of the finite element model of the wing and the fuselage and the result on the mass after the sizing process are shown. Due to the high flexibility of model generation with different levels of detail and the interface to the exchange database CPACS, DELiS is well suited to study the structural behaviour of different aircraft configurations in a multi-disciplinary design process.

Originality/value

The abstract definition of the object-oriented model allows several dimensions of variability, such as different fidelity levels, for the resulting structural model. Wings and fuselages can be interpreted as finite beam models, to calculate the global dynamic behaviour of a structure, or as finite shell models.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 August 2012

Chung Ket Thein and Jing‐Sheng Liu

The aim of this paper is to present a novel multifactor structural optimisation method incorporating reliability performance.

Abstract

Purpose

The aim of this paper is to present a novel multifactor structural optimisation method incorporating reliability performance.

Design/methodology/approach

This research addresses structural optimisation problems in which the design is required to satisfy multiple performance criteria, such as strength, stiffness, mass and reliability under multiple loading cases simultaneously. A MOST technique is extended to accommodate the reliability‐related optimisation. Structural responses and geometrical sensitivities are analysed by a FE method, and reliability performance is calculated by a reliability loading‐case index (RLI). The evaluation indices of performances and loading cases are formulated, and an overall performance index is presented to quantitatively evaluate a design.

Findings

The proposed method is applicable to multi‐objective, multi‐loading‐case, multi‐disciplinary and reliability‐related optimisation problems. The applications to a star‐like truss structure and a raised‐access floor panel structure confirmed that the method is highly effective and efficient in terms of structural optimisation.

Originality/value

A systematic method is proposed. The optimisation method combines the MOST technique with a RLI (a new alternative route to calculate the reliability index at multiple loading cases) using a parametric FE model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 May 2012

Sven Ziemer and Gernot Stenz

The purpose of this paper is to promote the opportunities of open source software (OSS) development in aeronautics. Using the development of an open source framework for…

Abstract

Purpose

The purpose of this paper is to promote the opportunities of open source software (OSS) development in aeronautics. Using the development of an open source framework for conceptual aircraft design as an example, this paper discusses how an inter‐organizational collaboration between industry and academia can build an environment for multi‐disciplinary aircraft design projects.

Design/methodology/approach

The paper takes the form of a literature study and comparison of software tools.

Findings

The open source model can facilitate the emergence of a large inter‐organizational community in aeronautics for developing a comprehensive software framework.

Practical implications

Developing a general OSS framework for conceptual aircraft design has the potential of attracting a large community for inter‐organizational collaboration on software tools for a multi‐disciplinary optimization (MDO) environment.

Originality/value

Using the concepts of open source in aeronautics has the potential to improve the collaboration among industry and academia on developing software tools for an MDO environment.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 995