To read this content please select one of the options below:

Computational investigation of shock‐mitigation efficacy of polyurea when used in a combat helmet: A core sample analysis

M. Grujicic (Clemson University, Clemson, South Carolina, USA)
A. Arakere (Clemson University, Clemson, South Carolina, USA)
B. Pandurangan (Corvid Technologies, Mooresville, North Carolina, USA)
A. Grujicic (Clemson University, Clemson, South Carolina, USA)
A. Littlestone (Naval Surface Warfare Center, Carderock Division, West Bethesda, Maryland, USA)
R. Barsoum (Office of Naval Research, Arlington, Virginia, USA)

Multidiscipline Modeling in Materials and Structures

ISSN: 1573-6105

Article publication date: 28 September 2012

325

Abstract

Purpose

Polyurea falls into a category of elastomeric co‐polymers in which, due to the presence of strong hydrogen bonding, the microstructure is of a heterogeneous nature and consists of a compliant/soft matrix and stiff/hard nanometer size hard domains. Recent investigations have shown that the use of polyurea as an external or internal coating/lining had substantially improved ballistic‐penetration resistance of metallic structures. The present work aims to use computational methods and tools in order to assess the shock‐mitigation ability of polyurea when used in the construction of different components (suspension‐pads, internal lining and external coating) of a combat helmet.

Design/methodology/approach

Shock‐mitigation capability of combat helmets has become an important functional requirement as shock‐ingress into the intra‐cranial cavity is known to be one of the main causes of traumatic brain injury (TBI). To assess the shock mitigation capability of polyurea, a combined Eulerian/Lagrangian fluid/solid transient non‐linear dynamics computational analysis of an air/helmet/head core sample is carried out and the temporal evolution of the axial stress and particle velocities (for different polyurea augmented helmet designs) are monitored.

Findings

The results obtained show that improvements in the shock‐mitigation performance of the helmet are obtained only in the case when polyurea is used as a helmet internal lining and that these improvements are relatively small. In addition, polyurea is found to slightly outperform conventional helmet foam, but only under relatively strong (greater than five atm) blastwave peak overpressures.

Originality/value

The present approach studies the effect of internal linings and external coatings on combat helmet blast mitigation performance.

Keywords

Citation

Grujicic, M., Arakere, A., Pandurangan, B., Grujicic, A., Littlestone, A. and Barsoum, R. (2012), "Computational investigation of shock‐mitigation efficacy of polyurea when used in a combat helmet: A core sample analysis", Multidiscipline Modeling in Materials and Structures, Vol. 8 No. 3, pp. 297-331. https://doi.org/10.1108/15736101211269122

Publisher

:

Emerald Group Publishing Limited

Copyright © 2012, Emerald Group Publishing Limited

Related articles