Search results

1 – 10 of 14
Article
Publication date: 27 June 2024

Zhiwei Li, Dingding Li, Yulong Zhou, Haoping Peng, Aijun Xie and Jianhua Wang

This paper aims to contribute to the performance improvement and the broader application of hot-dip galvanized coating.

Abstract

Purpose

This paper aims to contribute to the performance improvement and the broader application of hot-dip galvanized coating.

Design/methodology/approach

First, the ability to provide barrier protection, galvanic protection, and corrosion product protection provided by hot-dip galvanized coating is introduced. Then, according to the varying Fe content, the growth process of each sublayer within the hot-dip galvanized coating, as well as their respective microstructures and physical properties, is presented. Finally, the electrochemical corrosion behaviors of the different sublayers are analyzed.

Findings

The hot-dip galvanized coating is composed of η-Zn sublayer, ζ-FeZn13 sublayer, δ-FeZn10 sublayer, and Γ-Fe3Zn10 sublayer. Among these sublayers, with the increase in Fe content, the corrosion potential moves in a noble direction.

Research limitations/implications

There is a lack of research on the corrosion behavior of each sublayer of hot-dip galvanized coating in different electrolytes.

Practical implications

It provides theoretical guidance for the microstructure control and performance improvement of hot-dip galvanized coatings.

Originality/value

The formation mechanism, coating properties, and corrosion behavior of different sublayers in hot-dip galvanized coating are expounded, which offers novel insights and directions for future research.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 August 2024

Jiandong Yang, Zhiqiang Li, Hongbo Hao and Jinxu Li

This paper aims to investigate the corrosion kinetics and corrosion behavior of NdFeB magnets with the addition of heavy rare earth dysprosium (Dy) for its inhibitory activity on…

Abstract

Purpose

This paper aims to investigate the corrosion kinetics and corrosion behavior of NdFeB magnets with the addition of heavy rare earth dysprosium (Dy) for its inhibitory activity on poor corrosion resistance of NdFeB magnets.

Design/methodology/approach

To study the effect of dysprosium addition on corrosion behavior of NdFeB magnets and investigate its mechanism, potentiodynamic polarization, scanning electron microscopy (SEM), electrochemical impedance, energy dispersion spectrum (EDS) and scanning Kelvin probe force microscopy (SKPFM) were applied in the research. Besides, microstructures were observed by SEM equipped with EDS. Atomic force microscopy was introduced to analyze the morphology, potential image as well as the contact potential difference. The SKPFM mapping scan was applied to obtain the contact potential around Nd-rich phase at 0.1 Hz. The magnets were detected via X-ray diffraction.

Findings

Substitution of Nd with Dy led to improvement of corrosion resistance and reduced the potential difference between matrix and Nd-rich phase. Corrosion resistance is Nd-rich phase < the void < metal matrix; maximum potential difference between matrix and Nd-rich phase of Dy = 0, Dy = 3 and Dy = 6 Wt.% is 411.3, 279.4 and 255.8 mV, respectively. The corrosion rate of NdFeB magnet with 6 Wt.% Dy is about 67% of that without Dy at steady corrosion stage. The addition of Dy markedly enhanced the corrosion resistance of NdFeB magnets.

Originality/value

This research innovatively investigates the effect of adding heavy rare earth Dy to NdFeB permanent magnets on magnetic properties, as well as their effects on microstructure, phase structure and most importantly on corrosion resistance. Most scholars are studying the effect of element addition on magnetic properties but not on corrosion resistance. This paper creatively fills this research gap. NdFeB magnets are applied in smart cars, robotics, AI intelligence, etc. The in-depth research on corrosion resistance by adding heavy rare earths has made significant and outstanding contributions to promoting the rapid development of the rare earth industry.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 May 2024

Xiaohu Wen, Xiangkang Cao, Xiao-ze Ma, Zefan Zhang and Zehua Dong

The purpose of this paper was to prepare a ternary hierarchical rough particle to accelerate the anti-corrosive design for coastal concrete infrastructures.

Abstract

Purpose

The purpose of this paper was to prepare a ternary hierarchical rough particle to accelerate the anti-corrosive design for coastal concrete infrastructures.

Design/methodology/approach

A kind of micro-nano hydrophobic ternary microparticles was fabricated from SiO2/halloysite nanotubes (HNTs) and recycled concrete powders (RCPs), which was then mixed with sodium silicate and silane to form an inorganic slurry. The slurry was further sprayed on the concrete surface to construct a superhydrophobic coating (SHC). Transmission electron microscopy and energy-dispersive X-ray spectroscopy mappings demonstrate that the nano-sized SiO2 has been grafted on the sub-micron HNTs and then further adhered to the surface of micro-sized RCP, forming a kind of superhydrophobic particles (SiO2/HNTs@RCP) featured of abundant micro-nano hierarchical structures.

Findings

The SHC surface presents excellent superhydrophobicity with the water contact angle >156°. Electrochemical tests indicate that the corrosion rate of mild steel rebar in coated concrete reduces three-order magnitudes relative to the uncoated one in 3.5% NaCl solution. Water uptake and chloride ion (Cl-) diffusion tests show that the SHC exhibits high H2O and Cl- ions barrier properties thanks to the pore-sealing and water-repellence properties of SiO2/HNTs@RCP particles. Furthermore, the SHC possesses considerable mechanical durability and outstanding self-cleaning ability.

Originality/value

SHC inhibits water uptake, Cl- diffusion and rebar corrosion of concrete, which will promote the sustainable application of concrete waste in anti-corrosive concrete projects.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 May 2024

Chong Zhang, Jiayi Xiang and Qifan Wen

Due to the harsh underground environment in coal mining, the surface of hydraulic support columns corrodes severely, resulting in significant economic losses. Therefore, a highly…

35

Abstract

Purpose

Due to the harsh underground environment in coal mining, the surface of hydraulic support columns corrodes severely, resulting in significant economic losses. Therefore, a highly corrosion-resistant coatings is needed to extend the service life of the columns.

Design/methodology/approach

This study aims to compare the corrosion resistance of ST-Cr3C2-NiCr (sealed treatment Cr3C2-NiCr) coatings with industrially applied chromium plating. The corrosion failure mechanism of the coatings was investigated.

Findings

The results demonstrated that the ST-Cr3C2-NiCr coatings exhibited excellent corrosion resistance. After sealing treatment, the corrosion potential of Cr3C2-NiCr coatings was −0.215 V, and the corrosion current density of Cr3C2-NiCr coatings was lower than that of the plated parts.

Practical implications

ST-Cr3C2-NiCr coatings prepared by supersonic atmospheric plasma spraying could provide excellent corrosion resistance in the coal industry.

Originality/value

The low porosity and the presence of the NiCr phase were crucial factors contributing to the preferable corrosion resistance exhibited by the ST-Cr3C2-NiCr coatings. The corrosive process of the coatings involved layer-by-layer delamination of surface oxide film, sub-surface pitting, formation and degradation of sub-surface passive film, as well as severe block-like delamination.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 17 September 2024

Nzita Alain Lelo, P. Stephan Heyns and Johann Wannenburg

Steam explosions are a major safety concern in many modern furnaces. The explosions are sometimes caused by water ingress into the furnace from leaks in its high-pressure (HP…

Abstract

Purpose

Steam explosions are a major safety concern in many modern furnaces. The explosions are sometimes caused by water ingress into the furnace from leaks in its high-pressure (HP) cooling water system, coming into contact with molten matte. To address such safety issues related to steam explosions, risk based inspection (RBI) is suggested in this paper. RBI is presently one of the best-practice methodologies to provide an inspection schedule and ensure the mechanical integrity of pressure vessels. The application of RBIs on furnace HP cooling systems in this work is performed by incorporating the proportional hazards model (PHM) with the RBI approach; the PHM uses real-time condition data to allow dynamic decision-making on inspection and maintenance planning.

Design/methodology/approach

To accomplish this, a case study is presented that applies an HP cooling system data with moisture and cumulated feed rate as covariates or condition indicators to compute the probability of failure and the consequence of failure (CoF), which is modelled based on the boiling liquid-expanding vapour explosion (BLEVE) theory.

Findings

The benefit of this approach is that the risk assessment introduces real-time condition data in addition to time-based failure information to allow improved dynamic decision-making for inspection and maintenance planning of the HP cooling system. The work presented here comprises the application of the newly proposed methodology in the context of pressure vessels, considering the important challenge of possible explosion accidents due to BLEVE as the CoF calculations.

Research limitations/implications

This paper however aims to optimise the inspection schedule on the HP cooling system, by incorporating PHM into the RBI methodology, as was recently proposed in the literature by Lelo et al. (2022). Moisture and cumulated feed rate are used as covariate. At the end, risk mitigation policy is suggested.

Originality/value

In this paper, the proposed methodology yields a dynamically calculated quantified risk, which emphasised the imperative for mitigating the risk, as well as presents a number of mitigation options, to quantifiably affect such mitigation.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 14 May 2024

Wei Liu

This study aims to investigate the individual electrochemical transients arising from local anodic events on stainless steel, to uncover the potential mechanisms producing…

Abstract

Purpose

This study aims to investigate the individual electrochemical transients arising from local anodic events on stainless steel, to uncover the potential mechanisms producing different types of transients and to derive appropriate parameters indicative of the corrosion severity of such transient events.

Design/methodology/approach

An equivalent circuit model was used for the transient analysis, which was performed using a local current allocation rule based on the relative instant cathodic resistance of the coupled electrodes, as well as the kinetic parameters derived from the electrochemical polarization measurement.

Findings

The shape and size of the electrochemical current transients arising from SS 316 L were influenced by the film stability, local anodic dissolution kinetics and the symmetry of the cathodic kinetics between the coupled electrodes, where the ultralong transient might correspond to the propagation of film damage with a slow anodic dissolution rate. The dynamic cathodic resistance during the final stage of transient current growth can serve as a characteristic parameter that reflects the loss of passive film protection.

Originality/value

Estimation of the local anodic current trace opens a new way for individual electrochemical transient analysis associated with the charges involved, local current densities and changes in film resistance throughout localized corrosion processes.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 August 2024

Utku Kale

Climate change significantly impacts global temperatures, posing challenges to various sectors, including aviation. The purpose of this study is to assess the impact of climate…

Abstract

Purpose

Climate change significantly impacts global temperatures, posing challenges to various sectors, including aviation. The purpose of this study is to assess the impact of climate change on aircraft engine performance during different flight phases (take-off and cruise) and the environmental consequences.

Design/methodology/approach

This study examines the effects of rising temperatures on aircraft engine performance using real-time data from a Boeing 787-8 equipped with GEnx-1B engines, which are collected via Flight Data Recorder of the engines and were analyzed for the take-off and cruise phases on the ground. Exhaust gas temperature (EGT), fuel flow and take-off weights were evaluated.

Findings

The analysis revealed a significant increase in EGT at the cruising altitude of 38,000 ft during the summer months compared to expected standard atmospheric values. This increase, averaging over 200 °C, is attributed to global warming. Such elevated temperatures are likely to accelerate the degradation of turbine components, resulting in increased fuel consumption: higher EGT signifies inefficient engine operation, resulting in more fuel burned per unit thrust; early engine aging: elevated temperatures accelerate wear and tear on turbine components, potentially reducing engine lifespan and increasing maintenance costs and enhanced atmospheric pollution: incomplete combustion at high EGTs generates additional emissions, contributing to local air quality concerns.

Practical implications

The research findings have practical implications for understanding the potential operational challenges and environmental impacts of climate change on aircraft engine performance. This lets us explore mitigation strategies and adapt operational procedures to ensure sustainable regional aviation practices.

Originality/value

This research enhances environmental consequences by assessing the impact of climate change on aircraft performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 May 2024

He Wang, Zhiguo Li, Haifei Zhou, Zhengqiang Zhou, Wei Lu, Pengzhen Wang, Jiagang Zhang, Jin Gao and Pan Yi

This paper aims to compare the aging behavior of water-based coatings and solvent-based coatings in sulfuric acid environments and to discuss the related mechanism.

Abstract

Purpose

This paper aims to compare the aging behavior of water-based coatings and solvent-based coatings in sulfuric acid environments and to discuss the related mechanism.

Design/methodology/approach

A sulfuric acid solution with a concentration of 5 Wt.% was selected for immersion test at 23°C. The failure behavior of the coating was studied by combining the transformation rules of the macroscopic morphology and basic properties with the results of electrochemical impedance spectrum analysis.

Findings

The results showed that the surface smoothness of the water-based coating was lower than that of the solvent-based coating. The glossiness, thickness and hardness of the water-based coating exhibited more significant changes. The electrochemical test also indicated that the water-based coating was infiltrated by a large number of corrosive media, which may have induced corrosion under the coating. In contrast, the solvent-based coating showed good shielding properties, but the adhesion was seriously affected by the corrosive medium.

Originality/value

This work clarified the difference of failure behavior and mechanism between water-based coatings and solvent-based coatings in acidic environment and provided a theoretical basis for the selection and mechanism research of anticorrosive coatings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 August 2024

Pan Hao, Yuchao Dun, Jiyun Gong, Shenghui Li, Xuhui Zhao, Yuming Tang and Yu Zuo

Organic coatings are widely used for protecting metal equipment and structures from corrosion. Accurate detection and evaluation of the protective performance and service life of…

Abstract

Purpose

Organic coatings are widely used for protecting metal equipment and structures from corrosion. Accurate detection and evaluation of the protective performance and service life of coatings are of great importance. This paper aims to review the research progress on performance evaluation and lifetime prediction of organic coatings.

Design/methodology/approach

First, the failure forms and aging testing methods of organic coatings are briefly introduced. Then, the technical status and the progress in the detection and evaluation of coating protective performance and the prediction of service life are mainly reviewed.

Findings

There are some key challenges and difficulties in this field, which are described in the end.

Originality/value

The progress is summarized from a variety of technical perspectives. Performance evaluation and lifetime prediction include both single-parameter and multi-parameter methods.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 September 2024

Guotao Zhang, Zan Zhang, Zhaochang Wang, Yanhong Sun, Baohong Tong and Deyu Tu

The lubricating fluid stored in the porous matrix will spontaneously exude to supplement the lubricating film in the damaged area, thus ensuring the long-term self-lubricating…

Abstract

Purpose

The lubricating fluid stored in the porous matrix will spontaneously exude to supplement the lubricating film in the damaged area, thus ensuring the long-term self-lubricating function of the porous surface. To reveal the repair mechanism of oil film, it is necessary to understand the flow characteristics of oil in micropores. The purpose of this study guides the design of micropore structure to realize the rapid exudation of oil to the porous surface and the rapid repair of the lubricating film.

Design/methodology/approach

In this paper, cylindrical orifice, convergent orifice and divergent orifice were studied. The numerical model of lubricating oil exudation in micropores was established. The distribution characteristics of oil pressure, velocity and three-phase contact line in the process of oil exudation were investigated. The effects of different orifice shapes and orifice structure parameters on the pinning and spreading characteristics of oil droplet were analyzed. Then the internal mechanisms of oil droplet formation and spread on the orifice surface were summarized.

Findings

The results show that during the process of oil exudation, the three-phase contact line of the oil drop is pinned once at the edge of the cylindrical and convergent orifice. Compared with the three orifice structures, the inlet pressure of the oil drop is low, and the oil velocity at the pinning point is stable in the divergent orifice. Resulting in favorable oil exudation. It is easier for oil droplet to depin by appropriately reducing the wall wetting angle, increasing the aperture or controlling the wall inclination angle. Ensure the self-healing and long-lasting lubrication film of porous oil-bearing surfaces.

Practical implications

The effect of pore structure on the flow behavior of lubricating fluid has always been concerned. But the mechanism by which different orifice shape affect the pinning behavior of oil droplets is not yet clear, which is crucial for understanding the self-healing mechanism of oil films on porous surfaces. It is meaningful to analyze the mechanism of oil exudation and spreading on the porous surface of oil in the special orifice, to optimize the design of the orifice structure.

Originality/value

Orifice shape has influence on internal flow field parameters. There is no report on the influence of orifice shape on the film formation process of oil seepage and diffusion from pores. The effects of different orifice shapes and orifice structure parameters on the characteristics of oil droplet pinning and diffusion were studied.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0118/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 14