Search results

1 – 10 of 318
Article
Publication date: 5 April 2024

Abhishek Kumar Singh and Krishna Mohan Singh

In the present work, we focus on developing an in-house parallel meshless local Petrov-Galerkin (MLPG) code for the analysis of heat conduction in two-dimensional and…

Abstract

Purpose

In the present work, we focus on developing an in-house parallel meshless local Petrov-Galerkin (MLPG) code for the analysis of heat conduction in two-dimensional and three-dimensional regular as well as complex geometries.

Design/methodology/approach

The parallel MLPG code has been implemented using open multi-processing (OpenMP) application programming interface (API) on the shared memory multicore CPU architecture. Numerical simulations have been performed to find the critical regions of the serial code, and an OpenMP-based parallel MLPG code is developed, considering the critical regions of the sequential code.

Findings

Based on performance parameters such as speed-up and parallel efficiency, the credibility of the parallelization procedure has been established. Maximum speed-up and parallel efficiency are 10.94 and 0.92 for regular three-dimensional geometry (343,000 nodes). Results demonstrate the suitability of parallelization for larger nodes as parallel efficiency and speed-up are more for the larger nodes.

Originality/value

Few attempts have been made in parallel implementation of the MLPG method for solving large-scale industrial problems. Although the literature suggests that message-passing interface (MPI) based parallel MLPG codes have been developed, the OpenMP model has rarely been touched. This work is an attempt at the development of OpenMP-based parallel MLPG code for the very first time.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 December 2023

Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…

123

Abstract

Purpose

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.

Design/methodology/approach

The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.

Findings

A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.

Research limitations/implications

The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.

Originality/value

To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 January 2024

Anil Kumar Inkulu and M.V.A. Raju Bahubalendruni

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study…

Abstract

Purpose

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study aims to propose the reconfiguration of assembly systems by incorporating multiple humans with robots using a human–robot task allocation (HRTA) to enhance productivity.

Design/methodology/approach

A human–robot task scheduling approach has been developed by considering task suitability, resource availability and resource selection through multicriteria optimization using the Linear Regression with Optimal Point and Minimum Distance Calculation algorithm. Using line-balancing techniques, the approach estimates the optimum number of resources required for assembly tasks operating by minimum idle time.

Findings

The task allocation schedule for a case study involving a punching press was solved using human–robot collaboration, and the approach incorporated the optimum number of appropriate resources to handle different types of proportion of resources.

Originality/value

This proposed work integrates the task allocation by human–robot collaboration and decrease the idle time of resource by integrating optimum number of resources.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 7 March 2023

Muthuram N. and Saravanan S.

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Abstract

Purpose

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Design/methodology/approach

In this work, through experiments and numerical simulations, an attempt has been made to increase the fundamental natural frequency of the PCB assembly as high as practically achievable so as to minimize the impacts of dynamic loads acting on it. An optimization tool in the finite element software (ANSYS) was used to search the specified design space for the optimal support location of the six fastening screws.

Findings

It is observed that by changing the support locations based on the optimization results the fundamental natural frequency can be raised up to 51.1% and the same is validated experimentally.

Research limitations/implications

Manufacturers of PCBs used in computers fix the support locations based on symmetric feature of the board not on the dynamic behavior of the assembly. This work might lead manufacturers to redesign the location of other surface mount components.

Practical implications

This work provides guidelines for PCB manufacturers to finalize their support locating points which will improve the dynamic characteristics of the PCB assembly during its functioning.

Originality/value

This study provides a novel method to improve the life of PCB based on support locations optimization which includes majority of the surface mount components that contributes to the total mass the PCB assembly.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 19 May 2023

Michail Katsigiannis, Minas Pantelidakis and Konstantinos Mykoniatis

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the…

Abstract

Purpose

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the effect of lean manufacturing (LM) techniques on manufacturing facilities and the transition of a mass production (MP) facility to incorporating LM techniques.

Design/methodology/approach

In this paper, the authors apply a hybrid simulation approach to improve an educational automotive assembly line and provide guidelines for implementing different LM techniques. Specifically, the authors describe the design, development, verification and validation of a hybrid discrete-event and agent-based simulation model of a LEGO® car assembly line to analyze, improve and assess the system’s performance. The simulation approach examines the base model (MP) and an alternative scenario (just-in-time [JIT] with Heijunka).

Findings

The hybrid simulation approach effectively models the facility. The alternative simulation scenario (implementing JIT and Heijunka LM techniques) improved all examined performance metrics. In more detail, the system’s lead time was reduced by 47.37%, the throughput increased by 5.99% and the work-in-progress for workstations decreased by up to 56.73%.

Originality/value

This novel hybrid simulation approach provides insight and can be potentially extrapolated to model other manufacturing facilities and evaluate transition scenarios from MP to LM.

Details

International Journal of Lean Six Sigma, vol. 15 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 29 February 2024

Heng Liu, Yonghua Lu, Haibo Yang, Lihua Zhou and Qiang Feng

In the context of fixed-wing aircraft wing assembly, there is a need for a rapid and precise measurement technique to determine the center distance between two double-hole…

Abstract

Purpose

In the context of fixed-wing aircraft wing assembly, there is a need for a rapid and precise measurement technique to determine the center distance between two double-hole components. This paper aims to propose an optical-based spatial point distance measurement technique using the spatial triangulation method. The purpose of this paper is to design a specialized measurement system, specifically a spherically mounted retroreflector nest (SMR nest), equipped with two laser displacement sensors and a rotary encoder as the core to achieve accurate distance measurements between the double holes.

Design/methodology/approach

To develop an efficient and accurate measurement system, the paper uses a combination of laser displacement sensors and a rotary encoder within the SMR nest. The system is designed, implemented and tested to meet the requirements of precise distance measurement. Software and hardware components have been developed and integrated for validation.

Findings

The optical-based distance measurement system achieves high precision at 0.04 mm and repeatability at 0.02 mm within a range of 412.084 mm to 1,590.591 mm. These results validate its suitability for efficient assembly processes, eliminating repetitive errors in aircraft wing assembly.

Originality/value

This paper proposes an optical-based spatial point distance measurement technique, as well as a unique design of a SMR nest and the introduction of two novel calibration techniques, all of which are validated by the developed software and hardware platform.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 December 2023

M.A. Xianglin, Haochen Cai, Qiming Yang, Gang Wang and Kun Mao

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the…

Abstract

Purpose

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the newly developed assembly workstation.

Design/methodology/approach

First, spot check the trial production impellers and obtain three indexes that reflect the assembly quality of the impellers. Then, analyze the parameters that affect the assembly quality of the impeller using grey relational analysis (GRA), establish a model for the assembly quality of the range hood impeller based on the generalized grey relational degree and identify the main parameters. After that, analyze the transmission structure of automation assembly workstation, identify the reasons that affect parameters and propose improvement plans. Finally, a trial production is conducted on the automation assembly workstation after adopting the improved plan to verify the quality model of impeller automation assembly.

Findings

The research shows that compared to manual assembly, the automation assembly quality of the impeller using GRA model has been improved, shortening the debugging cycle of the newly developed assembly workstation.

Practical implications

The newly developed automation equipment will have some problems in the trial production stage, which often rely on the experience of engineers for debugging. In this paper, the automation assembly quality model of range hood impeller based on GRA is established, which can not only ensure the quality of finished impeller but also shorten the debugging cycle of the equipment. In addition, GRA can be widely used in the commissioning of other automation equipment.

Originality/value

This study has developed a set of impeller automation assembly workstation. The debugging method in the trial production stage is beneficial to shorten the trial production time and improve the economic benefits.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 1 April 2024

Mohammad Hani Al-Rifai

The purpose of this paper is twofold: first, a case study on applying lean principles in manufacturing operations to redesign and optimize an electronic device assembly process…

Abstract

Purpose

The purpose of this paper is twofold: first, a case study on applying lean principles in manufacturing operations to redesign and optimize an electronic device assembly process and its impact on performance and second, introducing cardboard prototyping as a Kaizen tool offering a novel approach to testing and simulating improvement scenarios.

Design/methodology/approach

The study employs value stream mapping, root cause analysis, and brainstorming tools to identify root causes of poor performance, followed by deploying a Kaizen event to redesign and optimize an electronic device assembly process. Using physical models, bottlenecks and opportunities for improvement were identified by the Kaizen approach at the workstations and assembly lines, enabling the testing of various scenarios and ideas. Changes in lead times, throughput, work in process inventory and assembly performance were analyzed and documented.

Findings

Pre- and post-improvement measures are provided to demonstrate the impact of the Kaizen event on the performance of the assembly cell. The study reveals that implementing lean tools and techniques reduced costs and increased throughput by reducing assembly cycle times, manufacturing lead time, space utilization, labor overtime and work-in-process inventory requirements.

Originality/value

This paper adds a new dimension to applying the Kaizen methodology in manufacturing processes by introducing cardboard prototyping, which offers a novel way of testing and simulating different scenarios for improvement. The paper describes the process implementation in detail, including the techniques and data utilized to improve the process.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 4
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 4 April 2024

Chuyu Tang, Hao Wang, Genliang Chen and Shaoqiu Xu

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior…

Abstract

Purpose

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior probabilities of the mixture model are determined through the proposed integrated feature divergence.

Design/methodology/approach

The method involves an alternating two-step framework, comprising correspondence estimation and subsequent transformation updating. For correspondence estimation, integrated feature divergences including both global and local features, are coupled with deterministic annealing to address the non-convexity problem of registration. For transformation updating, the expectation-maximization iteration scheme is introduced to iteratively refine correspondence and transformation estimation until convergence.

Findings

The experiments confirm that the proposed registration approach exhibits remarkable robustness on deformation, noise, outliers and occlusion for both 2D and 3D point clouds. Furthermore, the proposed method outperforms existing analogous algorithms in terms of time complexity. Application of stabilizing and securing intermodal containers loaded on ships is performed. The results demonstrate that the proposed registration framework exhibits excellent adaptability for real-scan point clouds, and achieves comparatively superior alignments in a shorter time.

Originality/value

The integrated feature divergence, involving both global and local information of points, is proven to be an effective indicator for measuring the reliability of point correspondences. This inclusion prevents premature convergence, resulting in more robust registration results for our proposed method. Simultaneously, the total operating time is reduced due to a lower number of iterations.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 12 May 2023

Marcello Braglia, Mosè Gallo, Leonardo Marrazzini and Liberatina Carmela Santillo

This paper proposes a new metric, named Operational Space Efficiency (OpSE), intended to diagnose and quantify the inefficient use of floor space for stocking materials in…

Abstract

Purpose

This paper proposes a new metric, named Operational Space Efficiency (OpSE), intended to diagnose and quantify the inefficient use of floor space for stocking materials in industrial workstations. OpSE presents a formulation analogous to the well-known Overall Equipment Effectiveness and can be obtained as the product of three distinct indicators: Standard Compliance Effectiveness, Standards Selection Effectiveness and Design Space-usage Effectiveness.

Design/methodology/approach

This indicator scrutinizes how usefully floor space in workstations is used to temporarily stock materials in the form of raw materials, semi-finished products, parts and components. It is suited for analyzing fixed-position layouts as well as product layouts typical of repetitive manufacturing settings, such as assembly lines in the automotive sector. The proposed indicator leverages an appropriate loss structure that features those factors affecting floor space utilization in workstations with regard to supplying and stocking materials.

Findings

An Italian manufacturer in the field of electro-technology was used as an industrial case study for the application of the methodology. The application shows how the three indicators work in practice, the effectiveness of OpSE and the methodology as a whole, in diagnosing floor space usage inefficiencies and in properly addressing improvement actions of the internal logistics in industrial settings.

Originality/value

The paper scrutinizes some important Key Performance Indicators (KPIs) dealing with space usage efficiency and identifies some significant drawbacks. Then it suggests a new, inclusive structure of losses and a KPI that not only measures efficiency but also allows to identify viable countermeasures.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 4
Type: Research Article
ISSN: 1741-0401

Keywords

Access

Year

Last 3 months (318)

Content type

Article (318)
1 – 10 of 318