Search results

1 – 10 of 708
Book part
Publication date: 14 November 2022

Krishna Teja Perannagari and Shaphali Gupta

Artificial neural networks (ANNs), which represent computational models simulating the biological neural systems, have become a dominant paradigm for solving complex analytical…

Abstract

Artificial neural networks (ANNs), which represent computational models simulating the biological neural systems, have become a dominant paradigm for solving complex analytical problems. ANN applications have been employed in various disciplines such as psychology, computer science, mathematics, engineering, medicine, manufacturing, and business studies. Academic research on ANNs is witnessing considerable publication activity, and there exists a need to track the intellectual structure of the existing research for a better comprehension of the domain. The current study uses a bibliometric approach to ANN business literature extracted from the Web of Science database. The study also performs a chronological review using science mapping and examines the evolution trajectory to determine research areas relevant to future research. The authors suggest that researchers focus on ANN deep learning models as the bibliometric results predict an expeditious growth of the research topic in the upcoming years. The findings reveal that business research on ANNs is flourishing and suggest further work on domains, such as back-propagation neural networks, support vector machines, and predictive modeling. By providing a systematic and dynamic understanding of ANN business research, the current study enhances the readers' understanding of existing reviews and complements the domain knowledge.

Details

Exploring the Latest Trends in Management Literature
Type: Book
ISBN: 978-1-80262-357-4

Keywords

Content available
Book part
Publication date: 18 January 2024

Abstract

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Book part
Publication date: 21 November 2018

Nurul Syarafina Shahrir, Norulhusna Ahmad, Robiah Ahmad and Rudzidatul Akmam Dziyauddin

Natural flood disasters frequently happen in Malaysia especially during monsoon season and Kuala Kangsar, Perak, is one of the cities with the frequent record of natural flood…

Abstract

Natural flood disasters frequently happen in Malaysia especially during monsoon season and Kuala Kangsar, Perak, is one of the cities with the frequent record of natural flood disasters. Previous flood disaster faced by this city showed the failure in notifying the citizen with sufficient time for preparation and evacuation. The authority in charge of the flood disaster in Kuala Kangsar depends on the real-time monitoring from the hydrological sensor located at several stations along the main river. The real-time information from hydrological sensor failed to provide early notification and warning to the public. Although many hydrological sensors are available at the stations, only water level sensors and rainfall sensors are used by authority for flood monitoring. This study developed a flood prediction model using artificial intelligence to predict the incoming flood in Kuala Kangsar area based on artificial neural network (ANN). The flood prediction model is expected to predict the incoming flood disaster by using information from the variety of hydrological sensors. The study finds that the proposed ANN model based on nonlinear autoregressive network with exogenous inputs (NARX) has better performance than other models with the correlation coefficient that is equal to 0.98930. The NARX model of flood prediction developed in this study can be referred to as the future flood prediction model in Kuala Kangsar, Perak.

Book part
Publication date: 18 January 2024

Naraindra Kistamah

This chapter offers an overview of the applications of artificial intelligence (AI) in the textile industry and in particular, the textile colouration and finishing industry. The…

Abstract

This chapter offers an overview of the applications of artificial intelligence (AI) in the textile industry and in particular, the textile colouration and finishing industry. The advent of new technologies such as AI and the Internet of Things (IoT) has changed many businesses and one area AI is seeing growth in is the textile industry. It is estimated that the AI software market shall reach a new high of over US$60 billion by 2022, and the largest increase is projected to be in the area of machine learning (ML). This is the area of AI where machines process and analyse vast amount of data they collect to perform tasks and processes. In the textile manufacturing industry, AI is applied to various areas such as colour matching, colour recipe formulation, pattern recognition, garment manufacture, process optimisation, quality control and supply chain management for enhanced productivity, product quality and competitiveness, reduced environmental impact and overall improved customer experience. The importance and success of AI is set to grow as ML algorithms become more sophisticated and smarter, and computing power increases.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Book part
Publication date: 9 September 2020

Ying L. Becker, Lin Guo and Odilbek Nurmamatov

Value at risk (VaR) and expected shortfall (ES) are popular market risk measurements. The former is not coherent but robust, whereas the latter is coherent but less interpretable…

Abstract

Value at risk (VaR) and expected shortfall (ES) are popular market risk measurements. The former is not coherent but robust, whereas the latter is coherent but less interpretable, only conditionally backtestable and less robust. In this chapter, we compare an innovative artificial neural network (ANN) model with a time series model in the context of forecasting VaR and ES of the univariate time series of four asset classes: US large capitalization equity index, European large cap equity index, US bond index, and US dollar versus euro exchange rate price index for the period of January 4, 1999, to December 31, 2018. In general, the ANN model has more favorable backtesting results as compared to the autoregressive moving average, generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) time series model. In terms of forecasting accuracy, the ANN model has much fewer in-sample and out-of-sample exceptions than those of the ARMA-GARCH model.

Details

Advances in Pacific Basin Business, Economics and Finance
Type: Book
ISBN: 978-1-83867-363-5

Keywords

Book part
Publication date: 18 January 2024

Ramful Raviduth

The consideration of alternative sources of material for construction is imperative to reduce the environmental impacts as two-fifths of the carbon footprint of materials is…

Abstract

The consideration of alternative sources of material for construction is imperative to reduce the environmental impacts as two-fifths of the carbon footprint of materials is attributed to the construction industry. One alternative material with improved biodegradable attributes which can contribute to carbon offset is bamboo. The commercialisation of bamboo in modern infrastructures has significant potential to address few of the Sustainable Development Goals (SDGs) itemised by the United Nations, namely SDG 9 about industry, innovation and infrastructure. Other SDGs covering sustainable cities and communities, responsible consumption and production and climate action are also indirectly addressed when utilising sustainable construction materials. Being a natural material however, the full commercialisation of materials such as bamboo is constrained by a lack of durability. Besides fracture mechanisms arising from load-induced cracks and thermal modification, the durability of bamboo material is greatly impaired by biotic and abiotic factors, which equally affect its natural rate of degradation, hence fracture behaviour. In first instance, this chapter outlines the various factors leading to the durability limitations in bamboo material due to load-induced cracks and natural degradation based on recent findings in this field from the author's own work and from past literature. Secondly, part of this chapter is devoted to a new approach of processing the surge of information about the varied aspects of bamboo durability by considering the powerful technique of artificial intelligence (AI), specifically the artificial neural network (ANN) for prediction modelling. Further use of AI-enabled technologies could have an impactful outcome on the life cycle assessment of bamboo-based structures to address the growing challenges outlined by the United Nations.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Abstract

Details

Machine Learning and Artificial Intelligence in Marketing and Sales
Type: Book
ISBN: 978-1-80043-881-1

Book part
Publication date: 15 March 2021

Hongming Wang, Ryszard Czerminski and Andrew C. Jamieson

Neural networks, which provide the basis for deep learning, are a class of machine learning methods that are being applied to a diverse array of fields in business, health…

Abstract

Neural networks, which provide the basis for deep learning, are a class of machine learning methods that are being applied to a diverse array of fields in business, health, technology, and research. In this chapter, we survey some of the key features of deep neural networks and aspects of their design and architecture. We give an overview of some of the different kinds of networks and their applications and highlight how these architectures are used for business applications such as recommender systems. We also provide a summary of some of the considerations needed for using neural network models and future directions in the field.

Book part
Publication date: 17 January 2009

Mark T. Leung, Rolando Quintana and An-Sing Chen

Demand forecasting has long been an imperative tenet in production planning especially in a make-to-order environment where a typical manufacturer has to balance the issues of…

Abstract

Demand forecasting has long been an imperative tenet in production planning especially in a make-to-order environment where a typical manufacturer has to balance the issues of holding excessive safety stocks and experiencing possible stockout. Many studies provide pragmatic paradigms to generate demand forecasts (mainly based on smoothing forecasting models.) At the same time, artificial neural networks (ANNs) have been emerging as alternatives. In this chapter, we propose a two-stage forecasting approach, which combines the strengths of a neural network with a more conventional exponential smoothing model. In the first stage of this approach, a smoothing model estimates the series of demand forecasts. In the second stage, general regression neural network (GRNN) is applied to learn and then correct the errors of estimates. Our empirical study evaluates the use of different static and dynamic smoothing models and calibrates their synergies with GRNN. Various statistical tests are performed to compare the performances of the two-stage models (with error correction by neural network) and those of the original single-stage models (without error-correction by neural network). Comparisons with the single-stage GRNN are also included. Statistical results show that neural network correction leads to improvements to the forecasts made by all examined smoothing models and can outperform the single-stage GRNN in most cases. Relative performances at different levels of demand lumpiness are also examined.

Details

Advances in Business and Management Forecasting
Type: Book
ISBN: 978-1-84855-548-8

Book part
Publication date: 15 December 1998

Fung-Ling Leung and John Hunt

The paper considers the application of neural networks to model driver decisions to change lane on a dual carriageway road. The lane changing process is treated as consisting of…

Abstract

The paper considers the application of neural networks to model driver decisions to change lane on a dual carriageway road. The lane changing process is treated as consisting of two decisions, namely motivation and opportunity. Separate backpropagation neural networks are applied to represent each of the two decisions. The trained motivation and opportunity neural network models are linked to produce a layered network which represents the complete lane changing process. Separate models are developed to represent the nearside to offside lane changing decision, and the offside to nearside lane changing decision. This paper describes the development of the model of the nearside to offside lane changing decision.

For model development, data were collected from several subject vehicle drivers. The results are presented and the implications considered. Selected data were applied to train the neural networks and then an independent subset of data were used to assess performance. When the complete nearside lane changing neural network model was presented with the unseen test examples, 93.3% of the examples were correctly predicted as a lane change or no lane change. These results are shown to be a considerable improvement on those obtained previously.

Details

Mathematics in Transport Planning and Control
Type: Book
ISBN: 978-0-08-043430-8

1 – 10 of 708