Search results

1 – 10 of 54
Article
Publication date: 27 March 2020

Shiqi Liu, Huanling Wang, Weiya Xu, Xiao Qu and W.C. Xie

The purpose of this paper is to investigate the mechanical behavior and propagation of cracks of numerical granite samples through the Brazilian split test and to provide a…

Abstract

Purpose

The purpose of this paper is to investigate the mechanical behavior and propagation of cracks of numerical granite samples through the Brazilian split test and to provide a reference for predicting the behavior of real granite samples.

Design/methodology/approach

The numerical models of granite containing two fissures are established using the parallel bond model (PBM) and the smooth joint model (SJM) in PFC2D. The peak stresses, number of cracks and anisotropic ratios are obtained to study the influence of the mineral composition and the angle of inclination of rock bridge on the strength, failure mode and deformation characteristics.

Findings

The numerical results obtained show that the mineral composition has a marginal influence on the peak stress. When the angle of inclination of rock bridge β increases, the peak stress drops to its minimum value at β = 90° and then gradually increases to a relatively low level. The behavior of cracks falls into three categories based on the distribution of cracks. By analyzing the stress–strain curve and the process of crack propagation for sample No. 4 with β = 60°, it is found that the process of failure can be divided into four stages and tensile cracks dominate. The anisotropic ratios of peak stress and a number of cracks obtained show that the peak stress is low anisotropic and the number of cracks is medium anisotropic.

Originality/value

This paper presents a numerical simulation method to analyze mechanical behavior and propagation of cracks under different conditions. The proposed method and the results obtained are useful for predicting the behavior of real granite samples in laboratory and engineering projects.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 June 2016

Rui Wang and Youhei Kawamura

The purpose of this paper is to present a design of climbing robot with magnetic wheels which can move on the surface of steel bridge. The locomotion concept is based on adapted…

Abstract

Purpose

The purpose of this paper is to present a design of climbing robot with magnetic wheels which can move on the surface of steel bridge. The locomotion concept is based on adapted lightweight magnetic wheel units with relatively high attractive force and friction force.

Design/methodology/approach

The robot has the main advantages of being compact (352 × – 215 × – 155 mm), lightweight (2.3 kg without battery) and simple mechanical structure. It is not only able to climb vertical walls and follow circumferential paths, but also able to pass complex obstacles such as bolts, steps, convex and concave corners with almost any inclination regarding gravity. By using a servo as a compliant joint, the wheel base can be changed to enable the robot to overcome convex corners.

Findings

The experiment results show that the climbing robot has a good performance on locomotion, and it is successful in negotiating the complex obstacles. On the other hand, the limitations in locomotion of the robot are also presented.

Originality/value

Compared with the past researches, the robot shows good performance on overcoming complex obstacles such as concave corners, convex corners, bolts and steps on the steel bridge. Magnetic wheel with the characterization of compact size and lightweight is able to provide bigger adhesion force and friction coefficient.

Details

Industrial Robot: An International Journal, vol. 43 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 August 2009

Paul W. Cleary

The purpose of this paper is to show how particle scale simulation of industrial particle flows using DEM (discrete element method) offers the opportunity for better understanding…

2887

Abstract

Purpose

The purpose of this paper is to show how particle scale simulation of industrial particle flows using DEM (discrete element method) offers the opportunity for better understanding of the flow dynamics leading to improvements in equipment design and operation.

Design/methodology/approach

The paper explores the breadth of industrial applications that are now possible with a series of case studies.

Findings

The paper finds that the inclusion of cohesion, coupling to other physics such fluids, and its use in bubbly and reacting flows are becoming increasingly viable. Challenges remain in developing models that balance the depth of the physics with the computational expense that is affordable and in the development of measurement and characterization processes to provide this expanding array of input data required. Steadily increasing computer power has seen model sizes grow from thousands of particles to many millions over the last decade, which steadily increases the range of applications that can be modelled and the complexity of the physics that can be well represented.

Originality/value

The paper shows how better understanding of the flow dynamics leading to improvements in equipment design and operation can potentially lead to large increases in equipment and process efficiency, throughput and/or product quality. Industrial applications can be characterised as large, involving complex particulate behaviour in typically complex geometries. The critical importance of particle shape on the behaviour of granular systems is demonstrated. Shape needs to be adequately represented in order to obtain quantitative predictive accuracy for these systems.

Details

Engineering Computations, vol. 26 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 August 2022

Jia-Nan He, De-wei Yang and Wu Zhenyu

For gravity dams built on foundations with directional joint sets, the seepage in the foundation possesses anisotropic characteristics and may have adverse effects on the…

Abstract

Purpose

For gravity dams built on foundations with directional joint sets, the seepage in the foundation possesses anisotropic characteristics and may have adverse effects on the foundation stability. A methodology for system reliability analysis of gravity dam foundations considering anisotropic seepage and multiple sliding surfaces is proposed in this paper.

Design/methodology/approach

Anisotropic seepages in dam foundations are simulated using finite element method (FEM) with the equivalent continuum model (ECM), and their effect on dam foundation stability is involved by uplift pressures acting on the potential sliding surfaces. The system failure probability of the dam foundation is efficiently estimated using Monte Carlo method (MCM) combined with response surface method (RSM).

Findings

The case study shows that it is necessary to consider the possibly adverse effect of anisotropic seepage on foundation stability of gravity dams and the deterministic analysis of the foundation stability may be misleading. The system reliability analysis of the dam foundation is justified, as the uncertainties in shear strength parameters of the foundation rocks and joint sets as well as aperture, connectivity and spacing of the joint sets are quantified and the system effect of the multiple potential sliding surfaces on the foundation reliability is reasonably considered.

Originality/value

(1) A methodology is proposed for efficient system reliability analysis of foundation stability of gravity dams considering anisotropic seepage and multiple sliding surfaces (2) The influence of anisotropic seepage on the stability of gravity dam foundation  is revealed (3) The influence of estimation errors of RSMs on the system reliability assessment of dam foundation is investigated.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2002

FUAD MRAD, M. ASEM ABDUL‐MALAK, SALAH SADEK and ZIAD KHUDR

Robotic industrial applications are very well established in the manufacturing industry, while they are relatively in their infancy phase in the construction sector. The need for…

Abstract

Robotic industrial applications are very well established in the manufacturing industry, while they are relatively in their infancy phase in the construction sector. The need for automation in construction is clear especially in repetitive tasks. The excavation process, which is generally critical in most construction projects, is a prime example of such tasks. This paper addresses automation assistance in excavation. The work utilized the robotics approach towards the automation of a typical excavator model, whose structure closely resembled that of an industrial manipulator. A simulation package using Matlab was developed using several embedded design and analysis tools. Emulation was also carried out on the RHINO educational robot to confirm the simulation results. The constructed simulation package offered an integrated environment for trajectory design and analysis for an excavator while addressing the constraints related to the excavator structure, safety and stability, and mode of application.

Details

Engineering, Construction and Architectural Management, vol. 9 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 January 1985

R. de Borst and P. Nauta

A new model for handling non‐orthogonal cracks within the smeared crack concept is described. It is based on a decomposition of the total strain increment into a concrete and into…

Abstract

A new model for handling non‐orthogonal cracks within the smeared crack concept is described. It is based on a decomposition of the total strain increment into a concrete and into a crack strain increment. This decomposition also permits a proper combination of crack formation with other non‐linear phenomena such as plasticity and creep and with thermal effects and shrinkage. Relations are elaborated with some other crack models that are currently used for the analysis of concrete structures. The model is applied to some problems involving shear failures of reinforced concrete structures such as a moderately deep beam and an axisymmetric slab. The latter example is also of interest in that it confirms statements that ‘reduced integration’ is not reliable for problems involving crack formation and in that it supports the assertion that identifying numerical divergence with structural failure may be highly misleading.

Details

Engineering Computations, vol. 2 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 February 1931

THE Accidents Investigation Sub‐Committee of the Aeronautical Research Committee has issued a detailed technical report on the accident to the Junkers F.13‐type aeroplane G‐AAZK

Abstract

THE Accidents Investigation Sub‐Committee of the Aeronautical Research Committee has issued a detailed technical report on the accident to the Junkers F.13‐type aeroplane G‐AAZK which occurred at Meopham, Kent, on July 21, 1930. The report, which fills ninety‐two pages, gives a complete account of the researches and technical investigations that were made at the instigation of the Sub‐Committee, much of which is of great technical interest. It is impossible here to do more than give a brief summary of the circumstances of the accident and the inquiries which led to the rejection of a number of theories of the cause, leading to the final conclusion that it was due to a phenomenon called “Buffeting,” which is defined as “an irregular oscillation of the tail unit, in which the tail‐plane bends rapidly up and down and the elevators move in an erratic manner.” It is caused by the eddies given off by the wings at large angles of incidence and is, the Sub‐Committee state, quite distinct from flutter, which, in the case of machines of the Junkers F.13‐type would develop only at speeds above 250 m.p.h.

Details

Aircraft Engineering and Aerospace Technology, vol. 3 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 2002

Lars Skyttner

Technical means now exist to monitor, predict a danger and issue early warnings when something devastating is estimated to happen in the human environment. In order to adapt such…

1965

Abstract

Technical means now exist to monitor, predict a danger and issue early warnings when something devastating is estimated to happen in the human environment. In order to adapt such means for the benefit of humanity, existing monitoring methods, basic system design principles and natural short and long environmental transformations were investigated. Finally an integrated automatic system for deformation monitoring and surveying of the Chernobyl disaster area, was proposed. The conclusion was that airborne remote sensing including GPS and photogrammetry can be considered the optimum solution.

Details

Kybernetes, vol. 31 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 May 1964

MISS ANNE SHAW's presence on the platform at the annual general meeting of the Management Consultants Association was a solid assurance that work study still lies within its…

Abstract

MISS ANNE SHAW's presence on the platform at the annual general meeting of the Management Consultants Association was a solid assurance that work study still lies within its scope. The initial impression was weakened, however, when the chairman, Mr. D. J. Nicolson, mentioned that the bulk of consultancy work was no longer concerned with work study. Instead, it gave more than half its attention to policymaking and the broad aspects of organising financial, manufacturing and marketing resources.

Details

Work Study, vol. 13 no. 5
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 1 August 2003

Peter Pivonka and Kaspar Willam

In this paper, we examine the influence of the third invariant in computational plasticity. For this purpose we consider the extended Leon model, an elasto‐plastic model for…

1127

Abstract

In this paper, we examine the influence of the third invariant in computational plasticity. For this purpose we consider the extended Leon model, an elasto‐plastic model for concrete materials which accounts for the difference of shear strength in triaxial compression and triaxial extension. Consequently, the deviatoric trace of the loading surface is no longer circular like in von Mises and Drucker‐Prager plasticity. In the limit it approaches the triangular shape of the Rankine condition of maximum direct stress. Thereby, elliptic functions describe the out‐of‐roundness of the circular trace in terms of C1‐continuous functions of the Lode angle. The algorithmic aspects of the third invariant considerably complicate the computational implementation since the radial return method of J2‐plasticity does no longer maintain normality leading to loss of deviatoric associativity. The paper will focus on the computational issues near the three regions with high curvature at the compressive meridians with special attention on the lack of convergence of the plastic return algorithm and its slow rate of convergence in these regions. The algorithmic discussion at the constitutive level will be augmented by the axial plane‐strain compression test in order to illustrate the effect of the third invariant at the structural level of finite element analysis.

Details

Engineering Computations, vol. 20 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 54