Search results

1 – 9 of 9
Article
Publication date: 22 January 2024

Peng Yin, Tao Liu, Baofeng Pan and Ningbo Liu

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient…

Abstract

Purpose

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient and clean utilization of coal in recent years, the stockpiling of CSNGS would increase gradually, and it would have significant social and environmental benefits with reasonable utilization of CSNGS. This study prepared a new geopolymer by mixing CSNGS with PC42.5 cement in a certain mass ratio as the precursor, with sodium hydroxide and sodium silicate solution as the alkali activators.

Design/methodology/approach

The formulation of coal-based synthetic natural gas slag geopolymer (CSNGSG) was determined by an orthogonal test, and then the strength mechanism and microstructure of CSNGSG were characterized by multi-scale tests.

Findings

The results show that the optimum ratio of CSNGSG was a sodium silicate modulus of 1.3, an alkali dosage of 21% and a water cement ratio of 0.36 and the maximum unconfined compressive strength of CSNGSG at 7 d was 26.88 MPa. The increase of curing temperature could significantly improve the compressive strength of CSNGSG, and the curing humidity had little effect on the compressive strength of CSNGSG. The development of the internal strength of CSNSG at high temperatures consumed SiO2, Al2O3 and CaO and the intensity of corresponding crystalline peaks decreased.

Originality/value

Moreover, the vibration of chemical bonds in different wavenumbers also revealed the reaction mechanism of CSNSG from another perspective. Finally, the relevant test results indicated that CSNGS had practical application value as a raw material for the preparation of geopolymer cementing materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 4 December 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

Concrete, the second most used material in the world, surpassed only by water, relies on a vast amount of cement. The process of cement production emits substantial amounts of…

Abstract

Purpose

Concrete, the second most used material in the world, surpassed only by water, relies on a vast amount of cement. The process of cement production emits substantial amounts of carbon dioxide (CO2). Consequently, it is crucial to search for cement alternatives. Geopolymer concrete (GC) uses industrial by-product material instead of traditional cement, which not only reduces CO2 emissions but also enhances concrete durability. On the other hand, the disposal of concrete waste in the landfills represents a significant environmental challenge, emphasising the urgent need for sustainable solutions. This study aimed to investigate waste concrete's best form and rate as the alternative aggregates in self-compacting and ambient-cured GC to preserve natural resources, reduce construction and demolition waste and decrease pertinent CO2 emissions. The binding material employed in this research encompasses fly ash, slag, micro fly ash and anhydrous sodium metasilicate as an alkali activator. It also introduces the best treatment method to improve the recycled concrete aggregate (RCA) quality.

Design/methodology/approach

A total of25%, 50% and 100% of coarse aggregates are replaced with RCAs to cast self-compacting geopolymer concrete (SCGC) and assess the impact of RCA on the fresh, hardened and water absorption properties of the ambient-cured GC. Geopolymer slurry was used for coating RCAs and the authors examined the effect of one-day and seven-day cured coated RCA. The mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity), rheological properties (slump flow, T500 and J-ring) and total water absorption of RCA-based SCGC were studied. The microstructural and chemical compositions of the concrete mixes were studied by the methods of energy dispersive X-Ray and scanning electron microscopy.

Findings

It is evident from the test observations that 100% replacement of natural aggregate with coated RCA using geopolymer slurry containing fly ash, slag, micro fly ash and anhydrous sodium metasilicate cured for one day before mixing enhances the concrete's quality and complies with the flowability requirements. Assessment is based on the fresh and hardened properties of the SCGC with various RCA contents and coating periods. The fresh properties of the mix with a seven-day curing time for coated RCA did not meet the requirements for self-compacting concrete, while this mix demonstrated better compressive strength (31.61 MPa) and modulus of elasticity (15.39 GPa) compared to 29.36 MPa and 9.8 GPa, respectively, for the mix with one-day cured coated RCA. However, incorporating one-day-cured coated RCA in SCGC demonstrated better splitting tensile strength (2.32 MPa) and water absorption (15.16%).

Research limitations/implications

A potential limitation of this study on SCGC with coated RCAs is the focus on the short-term behaviour of this concrete. This limited time frame may not meet the long-term requirements for ensuring the sustained durability of the structures throughout their service life.

Originality/value

This paper highlights the treatment technique of coating RCA with geopolymer slurry for casting SCGC.

Details

Smart and Sustainable Built Environment, vol. 13 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 May 2024

Jiahao Jiang, Jinliang Liu, Shuolei Cao, Sheng Cao, Rui Dong and Yusen Wu

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major…

Abstract

Purpose

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major factor affecting the shear capacity. This research aims to provide guidance for studying the shear capacity of GPC and to observe how the failure modes of beams change with the variation of the shear-span ratio, thereby discovering underlying patterns.

Design/methodology/approach

Three test beams with shear span ratios of 1.5, 2.0 and 2.5 are investigated in this paper. For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities are 337kN, 235kN and 195kN, respectively. Transitioning from 1.5 to 2.0 results in a 30% decrease in capacity, a reduction of 102kN. Moving from 2.0 to 2.5 sees a 17% decrease, with a loss of 40KN in capacity. A shear capacity formula, derived from modified compression field theory and considering concrete shear strength, stirrups and aggregate interlocking force, was validated through finite element modeling. Additionally, models with shear ratios of 1 and 3 were created to observe crack propagation patterns.

Findings

For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities of 337KN, 235KN and 195KN are achieved, respectively. A reduction in capacity of 102KN occurs when transitioning from 1.5 to 2.0 and a decrease of 40KN is observed when moving from 2.0 to 2.5. The average test-to-theory ratio, at 1.015 with a variance of 0.001, demonstrates strong agreement. ABAQUS models beams with ratios ranging from 1.0 to 3.0, revealing crack trends indicative of reduced crack angles with higher ratios. The failure mode observed in the models aligns with experimental results.

Originality/value

This article provides a reference for the shear bearing capacity formula of geopolymer reinforced concrete (GRC) beams, addressing the limited research in this area. Additionally, an exponential model incorporating the shear-span ratio as a variable was employed to calculate the shear capacity, based on previous studies. Moreover, the analysis of shear capacity results integrated literature from prior research. By fitting previous experimental data to the proposed formula, the accuracy of this study's derived formula was further validated, with theoretical values aligning well with experimental results. Additionally, guidance is offered for utilizing ABAQUS in simulating the failure process of GRC beams.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Abstract

Details

Smart and Sustainable Built Environment, vol. 13 no. 2
Type: Research Article
ISSN: 2046-6099

Article
Publication date: 16 April 2024

Ekrem Yilmaz

This study aims to investigate the viewpoints of heterodox economic thoughts and Islamic economic thought concerning the concept of waste. Additionally, it explores the shared…

Abstract

Purpose

This study aims to investigate the viewpoints of heterodox economic thoughts and Islamic economic thought concerning the concept of waste. Additionally, it explores the shared criticisms that both perspectives hold against mainstream economic thought in relation to waste.

Design/methodology/approach

First of all, the concept of waste is examined and the global effects of waste are investigated. Criticisms directed in the context of waste in mainstream economics in the context of heterodox school thoughts are examined. Likewise, criticisms directed in the context of waste in mainstream economics in the context of Islamic economic thoughts are examined. Finally, the common and different aspects of heterodox and Islamic economic thoughts were discussed, and the common criticisms of mainstream economic thought’s point of view toward waste were examined. This study is a theoretical, qualitative study.

Findings

Although both ideas have different aspects, heterodox and Islamic economic thoughts believe that the mainstream economy, which is based on capitalism and materialism, creates waste by ignoring the long-term social and environmental consequences of economic activity. They argue that the pursuit of profits and growth, without considering the impact on society and the environment, leads to an inefficient and unsustainable use of resources.

Originality/value

The best author’s knowledge, by emphasizing the common and different aspects of Islamic economics and heterodox thoughts, this study is the first to examine the concept of waste in the context of the common aspects of these ideas.

Details

International Journal of Ethics and Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9369

Keywords

Article
Publication date: 24 May 2023

Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…

Abstract

Purpose

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.

Design/methodology/approach

In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.

Findings

The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.

Originality/value

Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 5 April 2024

Kai Rüdele, Matthias Wolf and Christian Ramsauer

Improving productivity and efficiency has always been crucial for industrial companies to remain competitive. In recent years, the topic of environmental impact has become…

Abstract

Purpose

Improving productivity and efficiency has always been crucial for industrial companies to remain competitive. In recent years, the topic of environmental impact has become increasingly important. Published research indicates that environmental and economic goals can enforce or rival each other. However, few papers have been published that address the interaction and integration of these two goals.

Design/methodology/approach

In this paper, we identify both, synergies and trade-offs based on a systematic review incorporating 66 publications issued between 1992 and 2021. We analyze, quantify and cluster examples of conjunctions of ecological and economic measures and thereby develop a framework for the combined improvement of performance and environmental compatibility.

Findings

Our findings indicate an increased significance of a combined consideration of these two dimensions of sustainability. We found that cases where enforcing synergies between economic and ecological effects were identified are by far more frequent than reports on trade-offs. For the individual categories, cost savings are uniformly considered as the most important economic aspect while, energy savings appear to be marginally more relevant than waste reduction in terms of environmental aspects.

Originality/value

No previous literature review provides a comparable graphical treatment of synergies and trade-offs between cost savings and ecological effects. For the first time, identified measures were classified in a 3 × 3 table considering type and principle.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 9 of 9