Search results

1 – 10 of over 3000
Article
Publication date: 18 June 2024

Wei Wang, Jian Zhang and Yanhe Jia

With the development trend of China’s service-oriented manufacturing moving toward intelligence and personalization, the deep integration of manufacturing and service has become a…

Abstract

Purpose

With the development trend of China’s service-oriented manufacturing moving toward intelligence and personalization, the deep integration of manufacturing and service has become a synergistic challenge for enterprises.

Design/methodology/approach

An improved migratory bird optimization (IMBO) algorithm is proposed to solve the multiobjective FJSP model. First, this paper designs an integer encoding method based on job-machine. The algorithm adopts the greedy decoding method to obtain the optimal scheduling solution. Second, this paper combines three initialization rules to enhance the quality of the initial population. Third, three neighborhood search strategies are combined to improve the search capability and convergence of the solution space. Furthermore, the IMBO algorithm introduces the concepts of nondominated ranking and crowding degree to update the population better. Finally, the optimal solution is obtained after multiple iterations.

Findings

Through the simulation of 15 benchmark studies and a production example of a furniture enterprise, the IMBO algorithm is compared with three other algorithms: the improved particle swarm optimization algorithm, the global and local search with reinitialization-based genetic algorithm and the hybrid grey wolf optimization algorithm. The experiment results show the effectiveness of the IMBO algorithm in solving the multiobjective FJSP.

Practical implications

The study does not consider the influence of disturbance factors, such as emergency interventions and equipment failures, on scheduling in actual production processing. It is necessary to further study the dynamic FJSP problem.

Originality/value

The study proposes an IMBO algorithm to solve the multiobjective FJSP problem. It also uses three initialization rules to broaden the range of the solution space. The study applies multiple crossover strategies to avoid the algorithm falling into local optimality.

Details

International Journal of Web Information Systems, vol. 20 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 2 January 2024

Xiumei Cai, Xi Yang and Chengmao Wu

Multi-view fuzzy clustering algorithms are not widely used in image segmentation, and many of these algorithms are lacking in robustness. The purpose of this paper is to…

Abstract

Purpose

Multi-view fuzzy clustering algorithms are not widely used in image segmentation, and many of these algorithms are lacking in robustness. The purpose of this paper is to investigate a new algorithm that can segment the image better and retain as much detailed information about the image as possible when segmenting noisy images.

Design/methodology/approach

The authors present a novel multi-view fuzzy c-means (FCM) clustering algorithm that includes an automatic view-weight learning mechanism. Firstly, this algorithm introduces a view-weight factor that can automatically adjust the weight of different views, thereby allowing each view to obtain the best possible weight. Secondly, the algorithm incorporates a weighted fuzzy factor, which serves to obtain local spatial information and local grayscale information to preserve image details as much as possible. Finally, in order to weaken the effects of noise and outliers in image segmentation, this algorithm employs the kernel distance measure instead of the Euclidean distance.

Findings

The authors added different kinds of noise to images and conducted a large number of experimental tests. The results show that the proposed algorithm performs better and is more accurate than previous multi-view fuzzy clustering algorithms in solving the problem of noisy image segmentation.

Originality/value

Most of the existing multi-view clustering algorithms are for multi-view datasets, and the multi-view fuzzy clustering algorithms are unable to eliminate noise points and outliers when dealing with noisy images. The algorithm proposed in this paper has stronger noise immunity and can better preserve the details of the original image.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 June 2024

Qingting Wei, Xing Liu, Daming Xian, Jianfeng Xu, Lan Liu and Shiyang Long

The collaborative filtering algorithm is a classical and widely used approach in product recommendation systems. However, the existing algorithms rely mostly on common ratings of…

Abstract

Purpose

The collaborative filtering algorithm is a classical and widely used approach in product recommendation systems. However, the existing algorithms rely mostly on common ratings of items and do not consider temporal information about items or user interests. To solve this problem, this study proposes a new user-item composite filtering (UICF) recommendation framework by leveraging temporal semantics.

Design/methodology/approach

The UICF framework fully utilizes the time information of item ratings for measuring the similarity of items and takes into account the short-term and long-term interest decay for computing users’ latest interest degrees. For an item to be probably recommended to a user, the interest degrees of the user on all the historically rated items are weighted by their similarities with the item to be recommended and then added up to predict the recommendation degree.

Findings

Comprehensive experiments on the MovieLens and KuaiRec datasets for user movie recommendation were conducted to evaluate the performance of the proposed UICF framework. Experimental results show that the UICF outperformed three well-known recommendation algorithms Item-Based Collaborative Filtering (IBCF), User-Based Collaborative Filtering (UBCF) and User-Popularity Composite Filtering (UPCF) in the root mean square error (RMSE), mean absolute error (MAE) and F1 metrics, especially yielding an average decrease of 11.9% in MAE.

Originality/value

A UICF recommendation framework is proposed that combines a time-aware item similarity model and a time-wise user interest degree model. It overcomes the limitations of common rating items and utilizes temporal information in item ratings and user interests effectively, resulting in more accurate and personalized recommendations.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 20 November 2023

Sandeep Kumar Singh and Mamata Jenamani

The purpose of this paper is to design a consortium-blockchain based framework for cross-organizational business process mining complying with privacy requirements.

Abstract

Purpose

The purpose of this paper is to design a consortium-blockchain based framework for cross-organizational business process mining complying with privacy requirements.

Design/methodology/approach

Business process modeling in a cross-organizational setting is complicated due to privacy concerns. The process mining in this situation occurs through trusted third parties (TTPs). It uses a special class of Petri-nets called workflow nets (WF-nets) to represent the formal specifications of event logs in a blockchain-enabled cross-organization.

Findings

Using a smart contract algorithm, the proposed framework discovers the organization-specific business process models (BPM) without a TTP. The discovered BPMs are formally represented using WF-nets with a message factor to support the authors’ claim. Finally, the applicability and suitability of the proposed framework is demonstrated using a case study of multimodal transportation.

Originality/value

The proposed framework complies with privacy requirements. It shows how to represent the formal specifications of event logs in a blockchain using a special class of Petri-nets called WF-nets. It also presents a smart contract algorithm to discover organization-specific business process models (BPM) without a TTP.

Details

Business Process Management Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 21 April 2022

Zuanbo Zhou, Wenxin Yu, Junnian Wang, Yanming Zhao and Meiting Liu

With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional…

Abstract

Purpose

With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional fractional-order chaotic secure communication circuit with sliding mode synchronous based on microcontroller (MCU).

Design/methodology/approach

First, a five-dimensional fractional-order chaotic system for encryption is constructed. The approximate numerical solution of fractional-order chaotic system is calculated by Adomian decomposition method, and the phase diagram is obtained. Then, combined with the complexity and 0–1 test algorithm, the parameters of fractional-order chaotic system for encryption are selected. In addition, a sliding mode controller based on the new reaching law is constructed, and its stability is proved. The chaotic system can be synchronized in a short time by using sliding mode control synchronization.

Findings

The electronic circuit is implemented to verify the feasibility and effectiveness of the designed scheme.

Originality/value

It is feasible to realize fractional-order chaotic secure communication using MCU, and further reducing the synchronization error is the focus of future work.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 12 April 2023

Guoyu Zhang, Honghua Wang, Tianhang Lu, Chengliang Wang and Yaopeng Huang

Parameter identification of photovoltaic (PV) modules plays a vital role in modeling PV systems. This study aims to propose a novel hybrid approach to identify the seven…

51

Abstract

Purpose

Parameter identification of photovoltaic (PV) modules plays a vital role in modeling PV systems. This study aims to propose a novel hybrid approach to identify the seven parameters of the two-diode model of PV modules with high accuracy.

Design/methodology/approach

The proposed hybrid approach combines an improved particle swarm optimization (IPSO) algorithm with an analytical approach. Three parameters are optimized using IPSO, whereas the other four are analytically determined. To improve the performance of IPSO, three improvements are adopted, that is, evaluating the particles with two evaluation functions, adaptive evolutionary learning and adaptive mutation.

Findings

The performance of proposed approach is first verified by comparing with several well-established algorithms for two case studies. Then, the proposed method is applied to extract the seven parameters of CSUN340-72M under different operating conditions. The comprehensively experimental results and comparison with other methods verify the effectiveness and precision of the proposed method. Furthermore, the performance of IPSO is evaluated against that of several popular intelligent algorithms. The results indicate that IPSO obtains the best performance in terms of the accuracy and robustness.

Originality/value

An improved hybrid approach for parameter identification of the two-diode model of PV modules is proposed. The proposed approach considers the recombination saturation current of the p–n junction in the depletion region and makes no assumptions or ignores certain parameters, which results in higher precision. The proposed method can be applied to the modeling and simulation for research and development of PV systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 September 2023

Yong Qin and Haidong Yu

This paper aims to provide a better understanding of the challenges and potential solutions in Visual Simultaneous Localization and Mapping (SLAM), laying the foundation for its…

Abstract

Purpose

This paper aims to provide a better understanding of the challenges and potential solutions in Visual Simultaneous Localization and Mapping (SLAM), laying the foundation for its applications in autonomous navigation, intelligent driving and other related domains.

Design/methodology/approach

In analyzing the latest research, the review presents representative achievements, including methods to enhance efficiency, robustness and accuracy. Additionally, the review provides insights into the future development direction of Visual SLAM, emphasizing the importance of improving system robustness when dealing with dynamic environments. The research methodology of this review involves a literature review and data set analysis, enabling a comprehensive understanding of the current status and prospects in the field of Visual SLAM.

Findings

This review aims to comprehensively evaluate the latest advances and challenges in the field of Visual SLAM. By collecting and analyzing relevant research papers and classic data sets, it reveals the current issues faced by Visual SLAM in complex environments and proposes potential solutions. The review begins by introducing the fundamental principles and application areas of Visual SLAM, followed by an in-depth discussion of the challenges encountered when dealing with dynamic objects and complex environments. To enhance the performance of SLAM algorithms, researchers have made progress by integrating different sensor modalities, improving feature extraction and incorporating deep learning techniques, driving advancements in the field.

Originality/value

To the best of the authors’ knowledge, the originality of this review lies in its in-depth analysis of current research hotspots and predictions for future development, providing valuable references for researchers in this field.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 20 January 2023

Marisa Agostini, Daria Arkhipova and Chiara Mio

This paper aims to identify, synthesise and critically examine the extant academic research on the relation between big data analytics (BDA), corporate accountability and…

4020

Abstract

Purpose

This paper aims to identify, synthesise and critically examine the extant academic research on the relation between big data analytics (BDA), corporate accountability and non-financial disclosure (NFD) across several disciplines.

Design/methodology/approach

This paper uses a structured literature review methodology and applies “insight-critique-transformative redefinition” framework to interpret the findings, develop critique and formulate future research directions.

Findings

This paper identifies and critically examines 12 research themes across four macro categories. The insights presented in this paper indicate that the nature of the relationship between BDA and accountability depends on whether an organisation considers BDA as a value creation instrument or as a revenue generation source. This paper discusses how NFD can effectively increase corporate accountability for ethical, social and environmental consequences of BDA.

Practical implications

This paper presents the results of a structured literature review exploring the state-of-the-art of academic research on the relation between BDA, NFD and corporate accountability. This paper uses a systematic approach, to provide an exhaustive analysis of the phenomenon with rigorous and reproducible research criteria. This paper also presents a series of actionable insights of how corporate accountability for the use of big data and algorithmic decision-making can be enhanced.

Social implications

This paper discusses how NFD can reduce negative social and environmental impact stemming from the corporate use of BDA.

Originality/value

To the best of the authors’ knowledge, this paper is the first one to provide a comprehensive synthesis of academic literature, identify research gaps and outline a prospective research agenda on the implications of big data technologies for NFD and corporate accountability along social, environmental and ethical dimensions.

Details

Sustainability Accounting, Management and Policy Journal, vol. 14 no. 7
Type: Research Article
ISSN: 2040-8021

Keywords

Article
Publication date: 2 January 2023

Deepak Choudhary

As the number of devices that connect to the Internet of Things (IoT) has grown, privacy and security issues have come up. Because IoT devices collect so much sensitive…

Abstract

Purpose

As the number of devices that connect to the Internet of Things (IoT) has grown, privacy and security issues have come up. Because IoT devices collect so much sensitive information, like user names, locations, phone numbers and even how they usually use energy, it is very important to protect users' privacy and security. IoT technology will be hard to use on the client side because IoT-enabled devices do not have clear privacy and security controls.

Design/methodology/approach

IoT technology would be harder to use on the client side if the IoT did not offer enough well-defined ways to protect users’ privacy and security. The goal of this research is to protect people's privacy in the IoT by using the oppositional artificial flora optimization (EGPKC-OAFA) algorithm to generate the best keys for the ElGamal public key cryptosystem (EGPKC). The EGPKC-OAFA approach puts the most weight on the IEEE 802.15.4 standard for MAC, which is the most important part of the standard. The security field is part of the MAC header of this standard. In addition, the MAC header includes EGPKC, which makes it possible to make authentication keys as quickly as possible.

Findings

With the proliferation of IoT devices, privacy and security have become major concerns in the academic world. Security and privacy are of the utmost importance due to the large amount of personally identifiable information acquired by IoT devices, such as name, location, phone numbers and energy use. Client-side deployment of IoT technologies will be hampered by the absence of well-defined privacy and security solutions afforded by the IoT. The purpose of this research is to present the EGPKC with optimum key generation using the EGPKC-OAFA algorithm for the purpose of protecting individual privacy within the context of the IoT. The EGPKC-OAFA approach is concerned with the MAC standard defined by the IEEE 802.15.4 standard, which includes the security field in its MAC header. Also, the MAC header incorporates EGPKC, which enables the fastest possible authentication key generation. In addition, the best methodology award goes to the OAFA strategy, which successfully implements the optimum EGPKC selection strategy by combining opposition-based (OBL) and standard AFA ideas. The EGPKC-OAFA method has been proved to effectively analyze performance in a number of simulations, with the results of various functions being identified.

Originality/value

In light of the growing prevalence of the IoT, an increasing number of people are becoming anxious about the protection and confidentiality of the personal data that they save online. This is especially true in light of the fact that more and more things are becoming connected to the internet. The IoT is capable of gathering personally identifiable information such as names, addresses and phone numbers, as well as the quantity of energy that is used. It will be challenging for customers to adopt IoT technology because of worries about the security and privacy of the data generated by users. In this work, the EGPKC is paired with adversarial artificial flora, which leads in an increase to the privacy security provided by EGPKC for the IoT (EGPKC-OAFA). The MAC security field that is part of the IEEE 802.15.4 standard is one of the areas that the EGPKC-OAFA protocol places a high focus on. The Authentication Key Generation Protocol Key Agreement, also known as EGPKCA, is used in MAC headers. The abbreviation for this protocol is EGPKCA. The OAFA technique, also known as the combination of OBL and AFA, is the most successful method for selecting EGPKCs. This method is recognized by its acronym, OAFA. It has been shown via a variety of simulations that the EGPKC-OAFA technique is a very useful instrument for carrying out performance analysis.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 July 2021

Subhrapratim Nath, Jamuna Kanta Sing and Subir Kumar Sarkar

Advancement in optimization of VLSI circuits involves reduction in chip size from micrometer to nanometer level as well as fabrication of a billions of transistors in a single die…

Abstract

Purpose

Advancement in optimization of VLSI circuits involves reduction in chip size from micrometer to nanometer level as well as fabrication of a billions of transistors in a single die where global routing problem remains significant with a trade-off of power dissipation and interconnect delay. This paper aims to solve the increased complexity in VLSI chip by minimization of the wire length in VLSI circuits using a new approach based on nature-inspired meta-heuristic, invasive weed optimization (IWO). Further, this paper aims to achieve maximum circuit optimization using IWO hybridized with particle swarm optimization (PSO).

Design/methodology/approach

This paper projects the complexities of global routing process of VLSI circuit design in mapping it with a well-known NP-complete problem, the minimum rectilinear Steiner tree (MRST) problem. IWO meta-heuristic algorithm is proposed to meet the MRST problem more efficiently and thereby reducing the overall wire-length of interconnected nodes. Further, the proposed approach is hybridized with PSO, and a comparative analysis is performed with geosteiner 5.0.1 and existing PSO technique over minimization, consistency and convergence against available benchmark.

Findings

This paper provides high performance–enhanced IWO algorithm, which keeps in generating low MRST value, thereby successful wire length reduction of VLSI circuits is significantly achieved as evident from the experimental results as compared to PSO algorithm and also generates value nearer to geosteiner 5.0.1 benchmark. Even with big VLSI instances, hybrid IWO with PSO establishes its robustness over achieving improved optimization of overall wire length of VLSI circuits.

Practical implications

This paper includes implications in the areas of optimization of VLSI circuit design specifically in the arena of VLSI routing and the recent developments in routing optimization using meta-heuristic algorithms.

Originality/value

This paper fulfills an identified need to study optimization of VLSI circuits where minimization of overall interconnected wire length in global routing plays a significant role. Use of nature-based meta-heuristics in solving the global routing problem is projected to be an alternative approach other than conventional method.

Details

Circuit World, vol. 50 no. 2/3
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of over 3000